ASSESSMENT OF OPTIMAL RATE AND FREQUENCY OF CYPERMETHRIN FOR THE CONTROL OF TOMATO FRUIT BORER (Helicoverpa armigera HÜBNER IN ABEOKUTA SOUTH-WESTERN NIGERIA

Filani C.O¹*., O. O. R. Pitan ¹, I. O. O. Aiyelaagbe ² and A. A. R. Popoola ¹

¹Department of Crop Protection, Federal University of Agriculture, Abeokuta, P.M. B. 2240, Alabata, Abeokuta, Ogun State ²Department of Horticulture, Federal University of Agriculture, Abeokuta, P.M. B. 2240, Alabata, Abeokuta, Ogun State

*Corresponding author: filanico@funaab.edu.ng

SUMMARY

The study was carried out at the Teaching and Research Farms of the Federal University of Agriculture, Abeokuta (FUNAAB) in 2017 and 2021. Trials were laid out in a split-split plot arrangement fitted into Randomized Complete Design with three replications. The main plots comprised of tomato genotype: "Kerewa" and Roma-VF; the sub-plots comprised of Cypermethrin spray-frequencies (twice-a-week, once-aweek, twice-a-month and once-a-month). The sub-sub-plots also consisted of five Cypermethrin applications rate: 20 %, 40 %, 60 %, 80 %, and 100 % using recommended rate (2.4 litres/ha). Data were collected on the population density of H. armigera larvae, fruit damage and fruit yield. All data collected were subjected to Analysis of Variance and mean significant differences were separated using Least Significant Difference (LSD) at P 0.05. Cost benefit analyses of using Cypermethrin at different rates and frequencies were carried out. The results showed that population density of H. armigera larvae was not significantly influenced by genotype but by rate and frequency of application of Cypermethrin in both 2017 and 2021 cropping seasons. However, there was, reduction in TFB population, fruit damage and higher fruit yield when Cypermethrin was applied at 60 % and 80 % rate once-a-week in both trials. Higher economic returns were obtained with Cypermethrin applications at 60 % and 80 % rate once-a-week. 60 % and 80 % Cypermethrin application once-a-week was therefore, effective rates and frequency of Cypermethrin required for the control of H. armigera on tomato in the study area.

Keywords: Tomato; Helicoverpa armigera; Cypermethrin; Rate; Frequency; Cost-benefit.

Tomato (Solanum lycopersicum L.) an essential vegetable and industrial crop of the family Solanaceae accounts for about 18 % of the average daily consumption of vegetables in Nigeria (2, 18). It is a major part of the human diet contributing to a healthy and well-balanced diet (7). Tomato fruits are consumed fresh in salads and essential condiments for sauces, soup, meat or fish, ketchup, puree, powder and juice (3). Despite the usefulness of tomato, its

production is limited by several factors such as pests and diseases, soil and weather conditions. However, major losses in the quality and quantity of tomato production in Nigeria are due to attack by insect pests such as aphids, thrips, whiteflies, budworms, cutworm, tomato mite, looper caterpillars and red spider mite. *Tomato Fruit Borer -TFB (Helicoverpa armigera)* is potentially the most damaging insect pest of tomato (12). TFB larvae caused yield

loss in tomato up to 35-55 % due to their boring activities (19, 5). TFB become a major threat to tomato production in Southwestern Nigeria due to the physiological, ethiological and ecological factors of the area (1).

The control of *H. armigera on tomato* mainly depends on the use of insecticides due to its preference for highly-valued tomato fruits (13). However, indiscriminate use of insecticides to control TFB by farmers led to development of resistance to most classes of pesticides (23). Hence, there is an inclination of the farmers towards the use of higher doses and frequencies of insecticides than recommended rates for the management of TFB, this has deleterious effects on both target and non-target organisms as well as environmental hazards (20). Tomato farmers therefore, use higher rates and frequencies of insecticides on account of perception that recommended doses are not working very well in fields. Also, a field survey conducted in 2013 and 2017 on major tomato farms in Abeokuta and Ayetoro, Ogun State, Nigeria revealed that 80 % of tomato farmers use cypermethrin either singly or in combination with other insecticides for the management of TFB as often as possible without adhering to recommended rate or frequency due to their perception of insecticide resistance in TFB

Use of higher doses of insecticides, however leads to development of insecticide resistance because insects adapted to higher doses of insecticides become less susceptible to lower doses of insecticides, rendering insecticides ineffective thereby necessitating repeated applications of insecticides (6, 15). According to Zanin *et al.*, (25), reducing the number of spray applications during the cropping period, decreasing the applied dose, which can decrease the level of

control and promote the appearance of genetic resistance; and restricting the treated area are three possible ways to reduce the volume of pesticides used in agriculture. The development of management strategies for insecticide application can reduce or prevent the build-up of resistance in agricultural insect pests (11). Hence, the rate and frequency of application of insecticides as a means of pest control is becoming an increasingly more important issue.

Cypermethrin was reported to be among many insecticides used by farmers to control TFB on tomato in Southwestern Nigeria, (17). There is therefore, the need to investigate the minimum rate and frequency of application of the commonly used insecticide for TFB in the study area. The research was aim to reduced indiscriminate use of Cypermethrin in order to prevent population build-up of the pest and development of resistance to Cypermethrin thereby, reducing the cost of production and improve tomato fruits as yield integrated pest management (IPM) strategy for the control of TFB in Abeokuta. Therefore, the objectives of the study were to:

- (1.) establish the minimal effective rate and frequency of application of Cypermethrin using two tomato varieties
- (2.) investigate the influence of frequency and rate of application of Cypermethrin on *H. armigera* population density, fruit damage and yield of tomato
- (3.) analyze the cost benefit of using Cypermethrin in tomato production.

MATERIALS AND METHODS Experimental Site

The study was carried out at the Teaching and Research Farm of the Federal University of Agriculture, Abeokuta (FUNAAB), Ogun State (7° 15' N, 3°25' E,

and 159 m above sea level) in the rainforest transition Zone of South-Western Nigeria. The study was conducted in the early season (April- June) of 2017 and repeated in the late season (September - November) of 2021. A susceptible tomato genotype, "Kerewa" and a resistant genotype, "Roma VF" sourced from FUNAAB/ KNUST/ DfiD/ British Council DelPHE 5 Research Project and Cypermethrin (Avesthrin 10 % EC, Eastsun Chemical Co. Ltd) a reputable agrochemical shop were used for the experiment. Seeds of "Kerewa" and Roma VF were sown in separate nursery pots, under shed and watered at every 24 hours. Seedlings from the nursery were transplanted to the permanent field at 3 weeks after sowing (3 WAS) spacing 0.5 m by 0.5 m at the rate of one seedling per stand. The experiment was laid out in a split-split plot design with three replications. In both seasons, each of the two main plots were 81 x 13 m (1053 m²⁾ and it consisted of two (2) genotypes of tomato, "Kerewa" and Roma VF; each of the four (4) sub-plots was 18 x 13 m (234 m²) and it comprised four spray-frequencies of Cypermethrin: (a) once-a-week (b) twice-a-week (c) once-a-month and (d) twice-a-month. The five sub-sub plots, measured 2 x 3 m (6 m²), representing five different rates of Cypermethrin application: (i) 20 % (ii) 40 % (iii) 60 % (iv) 80 % and (v) 100 % of manufacturer's recommendation for Cypermethrin (2.4 litres/ha). A 3 m border was maintained between main plots, sub- plots and blocks while 2 m border was also maintained between sub-sub plots to minimize pesticide drift and pests' movement across adjacent plots. Manual hoe weeding was carried out once every 2 weeks. No fertilizer application was done throughout the experiment. Application of Cypermethrin commenced 2 weeks after transplanting (WAT) to fruit maturity using

Knapsack sprayer.

Assessment of H. armigera population and yield assessment

Larval population of *H. armigera* commenced from (2 WATS) to fruit maturity, (9WAP) using visual counting on ten randomly selected tomato plants from the middle row of each plot at weekly intervals between 0700 hours and 009 hours. Observations were based on the number of *H. armigera* larvae found on the leaves, stems, flowers, fruits and exit holes on fruits.

Fruits were harvested at 9 to 12 WAT from 5 randomly selected plants per genotype and later sorted into damaged and undamaged fruits. Yield and damage evaluations were based on the weight of undamaged and damaged fruits respectively.

Determination of cost benefit ratio of Cypermethrin

Cost incurred in the production of tomato using different rates and frequencies of Cypermethrin and revenues were recorded. The cost benefit analyses for each of the treatments were calculated using (Dormon *et al.*, 2007).

Cost Benefit ratio =

Additional Income x 100

Additional cost

Additional income (AI) = Additional revenue (AR) – Additional cost (AC)

Additional revenue (AR) = Additional yield $(kg) \times price/kg$:

where Additional yield = Yt - Yc; Yt = Yield of treatment; Yc = Yield of control.

Additional cost (AC) = Cost of insecticide + Cost of renting spraying equipment + Cost of spraying.

Data analyses

Data collected were subjected to analysis of variance (ANOVA) tests at (P < 0.05). Data on insect count were square root transformed, while data on percentage damage were arcsine (sin 1) transformed

before ANOVA tests were carried out. Least significant difference (LSD) was used to separate significant means.

RESULTS

Effects of Cypermethrin on population of Helicoverpa armigera larvae, fruits damage and yield of tomato

The population of *H. armigera* larvae was not significantly influenced by tomato genotype and its various interactions with rate and frequency of Cypermethrin application in both 2017 and 2021. The population of *H. armigera* larvae however, varied significantly (P 0.05) with frequency and rate of Cypermethrin application, and the interaction between genotype and frequency of Cypermethrin application in 2017 (Table 1).

Population of *H. armigera* larvae was significantly higher when Cypermethrin was sprayed once a month compared to once a week, twice a week, and twice a month, while the lowest populations were recorded from plots sprayed once and twice a week, regardless of the genotype. Significantly lower number of *H. armigera* larvae (P 0.05) was observed at 80 % and 100 %, while the highest number of *H. armigera* larvae was obtained at 20 % rate of application (Table 1

Fruit damage induced by *H. armigera* larvae on tomato fruits was significantly influenced by the frequency and rate of Cypermethrin application, interaction between frequency and genotype, genotype and rate of application and as well as frequency and rate of application as shown in (Table 2). The percentage damaged was significantly (P 0.05) lower once and twice a-week and was observed to be higher once month in both experiments irrespective of the genotype. However, *H. armigera* larvae significant (P 0.05)

reduction in fruit damaged was observed at 60 %, 80 % and 100 % compared with 20 % and 40 % rate of Cypermethrin application. Tomato genotype and the interaction between genotype and rate of Cypermethrin application were not significantly influenced by fruit yield of tomato but the rate and frequency of applications (Tables 4 and 5). At 60 %, 80 % and 100%, highest tomato fruit yield (kg/ha) were recorded once, twice week and twice-a-month. However, the lowest yield was recorded at 20 % rate of Cypermethrin application (Tables 3). Highest profit however, was observed at 100 % and 80 % Cypermethrin application once a week, followed by 60 % once a week, 60 % twice a week and 100 % twice a week, while the lowest profit was recorded at 20 % once a month in 2017. The result in 2021 showed that the highest economic return was observed when tomato was fruit sprayed with 80 % once-a-week and the lowest was recorded at 20 % once-amonth.

DISCUSSION

The observed reduced populations of H. armigera larvae at 60 and 80 % Cypermethrin applications rate showed that H. armigera larvae were susceptible to Cypermethrin at these rates. It also implied that cypermethrin applications at 60 and 80 % were effective in controlling *H. armigera* larvae. The level of *H. armigera* control achieved at 60 and 80 % Cypermethrin applications was also comparable to 100 % rate. This therefore, means that higher rate of Cypermethrin application such as 100 % may not be necessarily required for the control of *H. armigera* on tomato to prevent wastage of insecticide and reduce cost of production. These results are in line with the findings of Ashok (4) who reported the effectiveness of Endosulfan, Cypermethrin, Fenvalerate and Spinosad, against H.

Table 1: Effect of Cypermethrin sprayed at different rate and frequency on the population of $Helicoverpa\ armigera\ larvae\ in\ 2017\ and\ 2021\ seasons$

				Rate of	application	(%)		
Variable	Variety	Frequency	20	40	60	80	100	Mean
	_	Once a week	2.1	2.25	0.0	0.7	0.55	1.12
		Twice a week	0.0	0.0	0.0	0.0	0.0	0.0
	Kerewa	Once a month	7.9	3.65	6.35	5.2	6.65	5.95
		Twice a month	5.1	4.4	2.85	2.15	2.5	3.4
Number of								
H. armigera		0 1	1.05	0.75	0.6	0.7	0.7	0.76
larvae		Once a week	1.05	0.75	0.6	0.7	0.7	0.76
(2017)		Twice a week	0.55	0.75	0.0	0.0	0.0	0.26
	Roma VF	Once a month	4.0	3.05	2.7	1.75	1.7	2.64
		Twice a month	2.35	2.35	0.8	1.35	0.6	1.49
		Mean	2.88	2.15	1.66	1.48	1.59	
		I CD (0.05)	v=(ns):	f=1.21; r=0	0.72; v*f=4;	v*r= (ns);	f*r= (ns);	
		LSD (0.05)	v*f*r =	(ns)				
		Once a week	3.7	4.0	2.15	0.7	0.0	2.11
		Twice a week	1.5	1.3	0.75	0.0	0.0	0.71
	Kerewa	Once a month	7.4	7.25	6.0	5.7	4.15	6.1
		Twice a month	5.6	5.1	3.65	2.15	1.15	3.53
Number of								
H. armigera larvae		Once a week	2.85	2.65	1.45	0.5	1.15	1.72
(2021)		Twice a week	1.7	1.5	0.0	0.0	0.0	0.64
` ′	Roma VF	Once a month	4.85	4.35	3.85	3.45	3.15	3.93
		Twice a month	4.2	3.90	2.95	2.90	2.00	3.19
		Mean	3.98	3.78	2.60	1.93	1.45	
		LSD (0.05)	v= (ns): f=	2.05; r = 0	.57; v*f = 3	0.0; v*r = 4.5	54; $f*r = 1.49$	9; v*f*r =ns

Table 2: Effect of Cypermethrin sprayed at different rates and frequencies on *Helicoverpa* armigera damage in 2017 and 2021 seasons

				Ra	te of applica	tion (%)		
	Variety		20	40	60	80	100	Mean
		Once a week	360.0	350.0	110.0	136.0	88.0	108.80
	Kerewa	Twice a week	152.0	120.0	0.0	0.0	0.0	84.40
		Once a month	584.0	552.0	504.0	526.0	466.0	372.40
Damage (kg	g/ha)	Twice a month	364.0	322.0	202.0	204.0	172.0	252.80
(2017)		Once a week	170.0	154.0	52.0	50.0	32.0	91.60
	Roma	Twice a week	36.0	30.0	0.0	0.0	0.0	13.20
		Once a month	202.0	200.0	154.0	134.0	48.0	317.60
		Twice a month	142.0	154.0	102.0	88.0	82.0	193.60
		Mean	251.2	235.2	140.5	142.2	111.0	
			v= (ns): f=	= 88.29; r =	32.74; v*f	=165.06; v*r=	=248.08; f*1	r=98.0;
		LSD (0.05)	v*f*r = (ns)					
		Once a week	294	274	186	146	116	203.2
	Kerewa	Twice a week	158	156	108	82	66	114
		Once a month	570	520	394	408	412	460.8
Damage (kg	g/ha)	Twice a month	416	386	232	216	212	292.4
(2021)		Once a week	202	196	112	52	46	121.6
		Twice a week	66	62	48	30	24	46
	Roma	Once a month	284	292	228	260	222	257.2
		Twice a month	214	184	108	92	86	136.8
		Mean	275.5	258.8	177.0	160.8	148.0	
		LSD (0.05)	v= (ns): f=81.97	r = 25.76	v*f = r= 8	88.62; f*r=87	7.89; v*f*r	= (ns)

Table 3: Fruit yield of tomato treated with different rate and frequency of Cypermethrin in 2017 and 2021 seasons

101 / and 202				Ra	ntes of applica	tion (%)		_
	Variety	Frequency	20	40	60	80	100 (Check)	Mean
		Once a week	1014	1219	1704	1968	2074	1596
		Twice a week	1242	1374	1816	1722	1900	1611
	Kerewa	Once a month	796	1084	986	1028	1072	993
Yield (kg/ha) (2017)		Twice a month	1036	1038	1388	1348	1284	1219
		Once a week	1088	1142	1920	1822	1886	1572
		Twice a week	1456	1502	2048	1928	1772	1741
	Roma VF	Once a month	1058	952	1234	1252	1270	1153
		Twice a month	1010	1228	1630	1554	1792	1443
		Mean	1088	1192	1591	1578	1631	_
		LSD (0.05)	v = (ns); f	=243.20; r =	=94.30; v*f = ((ns); v*r= (r	ns); f*r =274.60;	v*f*r=583.3
		Once a week	1238.0	1510.0	2189.0	2510.0	2458.0	1981.0
		Twice a week	1526.0	1604.0	2318.0	2400.0	2442.0	2058.0
	Kerewa	Once a month	770.0	866.0	1048.0	1288.0	1312.0	1057.0
		Twice a month	976.0	1012.0	1428.0	1544.0	1634.0	1319
Yield (kg/ha)		Once a week	1064.0	1200.0	2200.0	2266.0	2370.0	1820.0
(2021)		Twice a week	1356.0	1422.0	2028.0	2306.0	2132.0	1849.0
	Roma VF	Once a month	954.0	882.0	1234.0	1152.0	1274.0	1099.0
		Twice a month	930.0	1174.0	1496.0	1490.0	1740.0	1366.0
		Mean	1102.0	1209.0	1743.0	1870.0	1920.0	-
		LSD (0.05)	v =(ns); f=	252.3; r=14	3.9; v*f= (ns)	v*r = 847.0	0; f*r=335.0; v*:	f*r= (ns)

LSDs are for the following comparisons; v, variety; f, frequency of Cypermethrin application; r, rate of Cypermethrin application, $v^*r =$ combination of variety and rate; $v^*F =$ combination of variety and frequency; $V^*r^*f =$ combination of variety and frequency and rate of Cypermethrin

Table 4: Partial budgeting of tomato fruit yield sprayed with different rate and frequency of Cypermethrin for the control of tomato fruit horer in 2017

tomato fruit borer in 2017	er in 2017							
Frequency	Rate (%)	Cost of	Cost of	Labour	TFC	Total cost	Revenue	Profit
		Insecticide	renting	cost		(TC)	a	
		Æ	sprayer (🕦	a	a	a		A
Once a week	20	4,608	4,000	20,000	60,000	88,608	202,800	114,192ef
	40	9,216	4,000	20,000	60,000	93,216	243,800	150,584de
	09	13,824	4,000	20,000	60,000	97,284	340,800	243,516b
	80	18, 432	4,000	20,000	000,09	102,432	393,600	291,168a
	100	23,040	4,000	20,000	000,09	107,040	414,800	307,760a
	(check)							
Twice a week	20	9216	4,000	40,000	000,09	133,216	248,400	115,184ef
	40	18,342	4,000	40,000	000,09	122,342	274,800	152,458de
	09	27,648	4,000	40,000	000,09	131,648	363,200	231,552b
	80	36,864	4,000	40,000	000,09	140,864	344,400	203,536bcd
	100	46,080	4,000	40,000	000,09	150,080	380,800	229,920b
	(check)							
Once a month	20	1152	4,000	5.000	000,09	130,152	159,200	29,048g
	40	2304	4,000	5.000	000,09	131,304	216,800	85,496f
	09	3456	4,000	5.000	60,000	72,456	197,200	124,744ef
	80	4608	4,000	5.000	000,09	73,608	205,600	131,992ef
	100	5760	4,000	5.000	60,000	74,760	214,400	131,992ef
	(check)							
Twice a month	20	2304	4,000	10,000	60,000	76,304	207,200	130.896ef
	40	4608	4,000	10,000	60,000	78,608	207,600	128,992ef
	09	6912	4,000	10,000	000,09	80,912	277,600	196,688bcd
	80	9216	4,000	10,000	000,09	83,216	296,600	213,384bc
	100(Check)	11,520	4,000	10,000	000,09	85,520	256,800	171,280cde

Cost of insecticide + Cost of renting sprayer + Labour cost = TVC; TC= TFC +TVC; Profit = Re venue - TC

Table 5: Partial budgeting of tomato fruit yield sprayed with different rate and frequency of Cypermethrin for the control of tomato fruit borer in 2021

tomato iruit porer in 2021	er in 2021							
Frequency	Rate (%)	Cost of	Cost of	Labour	Total fixed	Total Cost	Revenue	Profit
		Insecticide	renting	cost	cost (TFC)	<u>Z</u>	<u>a</u>	<u>a</u>
		1	sprayer (M)	(12)				
Once a week	20	4,608	4,000	20,000	00,09	88,608	247,600	158,992def
	40	9,216	4,000	20,000	000,09	93,216	302,200	208,984cde
	09	13,824	4,000	20,000	000,09	97,284	437,800	340,516b
	80	18, 432	4,000	20,000	000,09	102,432	502,000	399,56a
	100	23,040	4,000	20,000	000,09	107,040	491,600	384,560ab
	(check)							
Twice a week	20	9216	4,000	40,000	000,09	133,216	305,200	171,984cdef
	40	18,342	4,000	40,000	000,09	122,340	320,800	198,458cde
	09	27,648	4,000	40,000	000,09	131,648	463,600	331,952ab
	80	36,864	4,000	40,000	000,09	140,864	480,000	339,136ab
	100	46,080	4,000	40,000	00,09	150,080	488,400	338,320ab
	(check)							
Once a month	20	1152	4,000	5.000	000,09	130,152.00	154,200	24,048g
	40	2304	4,000	5.000	000,09	131,304	173,200	41,896g
	09	3456	4,000	5.000	000,09	72,456	209,600	137,144ef
	80	4608	4,000	5.000	000,09	73,608	257,600	183,99cdef
	100	5760	4,000	5.000	000,09	74,760	262,400	187,640cdef
	(check)							
Twice a month	20	2,304	4,000	10,000	000,09	76,304	195,200	118,896f
	40	4,608	4,000	10,000	000,09	78,608	202,400	123,792f
	09	6,912	4,000	10,000	000,09	80,912	285,600	204,688cde
	80	9,216	4,000	10,000	000,09	83,216	308,800	225,584cdc
	100	11,520	4,000	10,000	000,09	85,520	326,800	241,280c
	(check)							

Cost of insecticide + Cost of renting sprayer + Labour cost = TVC; TC= TFC +TVC; Profit = Revenue - TC

armigera.

The lower infestation of H. armigera observed at 60 %, and 80 % rate is in conformity with the report of Ogunwolu (16) that Cypermethrin suppressed Heliothis armigera damage on tomato. The lower populations of *H. armigera* larvae at 100 % compared to 20 and 40 % rates depicted the effectiveness of Cypermethrin in controlling H. armigera using the manufacturer's recommended rate. The report of Gressel (9) that application of insecticide using recommended rate could effectively control target species of insect pests agrees with the findings of this study. The present study also, showed that application of Cypermethrin, once- and twice-a-week reduced infestation of TFB and fruit damage than once and twice-amonth frequencies of application. This may be due to the short intervals of Cypermethrin application that provided long-time protection against H. armigera before another application (14). However, according to Grewal et al., (10) effectiveness of insecticides depends on the rates, frequency and application intervals. This was evident from this study as Cypermethrin applied at 60, 80 and 100 % rates were effective in mitigating H. armigera populations only at once-and twice-a-week and not at once- and twice-amonth frequencies of Cypermethrin application.

The result of this study was in line with the report of Velini (24) who reported that target insect pests can be effectively managed by applying rates less than the recommended rate in order to reduce cost and environmental impact. Also, Helps *et al.*, (11) has reported that application of insecticide using a rate below the recommended level (i.e. 50% of its full dose) would not lead to loss of its effectiveness.

Furthermore, the effective and better control of H. armigera obtained at 60 and 80 % rates of Cypermethrin application coupled with higher yield and reduced fruit damage implied that the rate of Cypermethrin application for the control of H. armigera could be reduced to a minimal level without any necessary implication on the yield and pest control irrespective of the variety of tomato used. The agrees with the report of Helps et al., (11) who recommended that insecticide dose should be reduced below the maximum permitted, without prejudicing effective control. This would eradicate indiscriminate use of insecticides to control H. armigera which led to development of resistance to insecticides as reported by Torres-Vila, et al. (21, 22). Hence, application of insecticides at 60 %, and 80 % rate once or twice-a-week frequency can be integrated as part of the management strategies to slow down the build-up of H. armigera population on tomato. According to Glover-Amengor and Tetteh (8), lower rates of pesticide application i. e. lambdacyhalothrin suppressed pest populations in tomato, garden egg and okra fields, reduced cost of pesticides and pesticide burden on the environment. He also opined that tomato garden egg and okra yields were higher at the lower rates of pesticide application.

The results of the present study further showed that farmers may require only a single round of spray application of cypermethrin in a week to protect their tomato crop to effectively mitigate TFB damage and maximize profits irrespective of the variety used. When adopted by farmers, this reduction in insecticide use might also mitigate the negative consequences of insecticides on human health and the environment.

In the present study, application of

Cypermethrin at 60 and 80 % of the recommended rate once-a-week for the management of *H. armigera* lowered the mean number of *H. armigera*, suppressed fruit damage and increased fruit yield of tomato. The present findings also, revealed that it was more cost effective using Cypermethrin at 60 and 80 % once in a week than 20, 40 and 100 % rates at twice-a-week, once-a-month and twice-a-month frequencies of Cypermethrin applications due to the higher economic returns.

CONCLUSION

The study revealed Cypermethrin application at 60 and 80 % rate once-a-week as the minimal dosage rate at which to achieve a considerable level of control of H. armigera infestation and damage. Also, the highest and the positive cost-benefit/profit obtained at 60 and 80% rate once-a week further confirmed the cost effectiveness of using cypermethrin at 60 % rate once a week as the best for the management of H. armigera. It can be concluded from this study that spraying of cypermethrin at 60 % of recommended rate once-a-week was the minimal rate and frequency required to achieve adequate control of *H. armigera* on tomato with higher economic returns.

LITERATURE CITED

- 1. Ahmad, M. (2007). An insecticide resistance mechanism and their management in Helicoverpa armigera (Hübner). A review Journal of Agricultural Research 45 (4): 328.
- Ajagbe, B. O., Oyediran, W. O., Omoare, A. M., Sofowora,
 O. O. (2014). Assessment of postharvest practices among tomato (Solanum lycopersicum)

- farmers/processors in Abeokuta north local government area of Ogun State. Nigerian International Journal of Education and Research 2(3): 231.
- 3. Amurtiya, M. A. and Adewuyi, K. A. (2020). Analysis of tomato production in some selected local government areas of Kano State. Nigeria. Proceedings of the 3rd INFER Symposium on AgriTech Economics for Sustainable Future. Harper Adams University, Newport, United Kingdom 12-15.
- 4. Ashok Kumar, C.T. 2008. Report on bio-efficacy of ready mixture of beta-cyfluthrin + imidacloprid 21%-300 OD against fruit borer in tomato. Evaluation report submitted to Bayers. pp. 24.
- 5. Borisade, O. A., Kolawole, A. O., Adebo, G. M., Uwaidem, Y. I. (2017). The tomato leafminer (T u t a a b s o l u t a) (Lepidoptera: Gelechiidae) attack in Nigeria: Effect of climate change on over-sighted pest or agro-bioterrorism. Journal of Agricultural Extension and Rural Development 9(8): 163-171.
- 6. Dilbar, H., Hafiz, M. S., Muhammad, S., Muneer, A. (2014). Monitoring of insecticides resistance in field populations of Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). Journal of

- Entomology and Zoology Studies 2(6):1-8.
- 7. Food and Agricultural Organization Statistics (FAOSTAT) (2018). Statistical data on agricultural production. Online at: www.faosat.org. (Accessed June 2018).
- 8. Glover-Amengor, M, and Tetteh, F. M. (2008). Effect of pesticide application sate on yield of vegetables and soil microbial communities. West African Journal of Applied Ecology, Vol. 12, 1-7.
- 9. Gressel, J. C. (2017). All doses selected for resistance; when will this happen and how to slow evolution. *American Chemical Society Symposium* 1249: 61–72.
- 10. Grewal, A. S., Singla, A., Kamboj Dua, J. S. (2017). Pesticide Residues in Food Grains, Vegetables and Fruits: A Hazard to Human Health. Journal of Medicinal Chemistry and Toxicology 2(1): 1-7.
- 11. Helps, J. C., Paveley, N. D., Van den Bosch, F. (2017). Identifying circumstances under which high insecticide dose increases or decreases resistance selection. Journal of Theoretical Biology 428: 153-167.
- 12. Kakar, K. L., Bhalla, O. P., Dhaliwal, H. S. (1990). Screening of tomato germplasm and breeding for resistance against fruitborer (Helicoverpa

- armigera). Indian Journal of Insect Science 3(1): 57-58.
- 13. Martin, T. Ochoui, G. O., Djihinto, A., Traore, D., Togola, M., Vassal, J. M., Vaissayre, M., Fournier, D. (2005). Controlling an insecticide-resistant bollworm in West Africa. Agriculture, Ecosystems and Environment 107(4): 409-411.
- 14. Nboyine, J. A., Asamani, E., Agboyi, L. K., Yahaya, I., Kusi, F., Adazebra, G. and Badi, B. K. (2022). Assessment of the optimal frequency of insecticide sprays required to manage Fall armyworm (Spodoptera frugiperda J. E. Smith) in maize (Zea mays L.) in Northern Ghana. CABI Agriculture and Bioscience 3:3.
- 15. Nemade, P., Wadaskar, W., Jayashri, U. R., Sable, Y. R., Rathod, T. H. (2017). Validation of recommended doses of insecticides against sucking pests of BT cotton. Journal of Entomology and Zoology Studies 5(3): 256-260.
- 16. Ogunwolu, E. O. (1989). Effects and insecticidal suppression of damage caused by *Heliothis armigera* (Hubner.) on rain fed tomato in Nigeria. *Tropical Pest Management* 35(4): 406-409.
- 17. Pitan, O. O. R., Ayo-John, E. I., Afolabi, C. G., Odeyemi, I. S., Olorunmaye, P. S. and Filani, C.O. (2014). A report of

- survey of FADAMA farms in Oyo State Local Governments for pests and diseases sponsored by FADAMA Project III. 1-53pp.
- 18. Quinet, M., Angosto, T., Yuste-Lisbona, F., Blanchard-Gros, R., Bigot, S., Martinez, J., and Lutt, S. (2019). Tomato fruit development and metabolism. Frontier Plant Science 10:1554. doi:10.3389/fpls.2019.01554.
- 19. Sajjad, M., Ashfaq, M., Suhail, A., Akhtar, S. (2011). Screening of tomato genotype for resistance to tomato fruitborer (Helicoverpa armigera Hubner) in Pakistan. Pakistan Journal of Agricultural Sciences 48(1):59-62.
- 20. Togola, A, Meseka, S, Menkir, A, Badu-Apraku, B, Bouk, O., Tamò, M., Djouaka, R. (2022). Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria. International Journal of Environmental Research in Public Health. 15:849. https://doi.org/10.3390/ijerph15050849.
- 21. Torres-Vila, L. M., Rodriguez-Molina, M. C., Lacasa-Plasencia, A., Bielza-Lino, P., Rodr!guez del Rinc!on, A. (2002a). Pyrethroid resistance of Helicoverpa armigera in Spain: current status and

- agroecological perspective. Agriculture, Ecosystems and Environment 93, 55-66.
- 22. Torres-Vila, L. M., Rodr! iguez-Molina, M. C., Lacasa-Plasencia, A., Bielza-Lino, P. (2002b). Insecticide resistance of Helicoverpa armigera to endosulfan, c a r b a m a t e s a n d organophosphates: the Spanish case. Crop Protection 21, 1003-1013.
- 23. Umeh, V. C., Felicia, O. K. Nwanguma, E. I., Oyeboade, S. A., Manga, A. A. (2002). A survey of the insect pests and farmer's practices in the cropping of tomato in Nigeria. *Tropicultura* 20(40):181-186.
- Velini, E. D., Carbonari, G. A.,
 Trinity M. L., Gomes, G. L.
 (2017) . Variation in pesticide doses under field conditions.
 American Chemical Society
 Symposium Series 1249: 47-60.
- 25. Zanin, A. A., Neves, D. C., Ribeiro Teodoro, L. P., Antonio da Silva Júnior, C., Pereira da Silva, S., Eduardo Teodor, P. and Rojo Baio, F. H. (2022). Reduction of pesticide application via realtime precision spraying. Scientific Reports 12:5638. https://doi.org/10.1038/s41598-022-09607.