ASSESSMENT OF PHYTOBENEFICIAL RHIZOSPHERIC BACTERIA ISOLATED FROM TWO NIGERIAN RICE CULTIVARS FOR PLANT-GROWTH PROMOTING ABILITIES

Olayemi P. O.¹, Odedara O. O.¹, Afolabi C. G.², Akintoku K. A.¹, Soremi P. A.³, Akintokun P. O.³

¹Department of Microbiology, ²Department of Crop Protection, ³Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Nigeria

*Corresponding author email: odedaraoo@funaab.edu.ng or sdara@hotmail.com

SUMMARY

Rhizospheric plant bacteria present a sustainable way to encourage cheap and environmental-friendly alternatives to inorganic agrochemicals. Bacteria were isolated from the rhizosphere of two Nigerian rice varieties (OFADA and ITA 150). Assays including indole acetic acid (IAA) production, phosphate solubilization, seed germination, hydrogen cyanide (HCN) and ammonia production, and antifungal assay were conducted to identify the phytobeneficial isolates. One hundred and fifty three (153) strains were isolated while ITA 150 had higher bacterial counts (5.18 logCFU/g) as compared to OFADA (4.12 logCFU/g). Major bacteria genera observed were Bacillus, Enterobacter, Citrobacter, Klebsiella, Acinetobacter, Pseudomonas, Staphylococcus and Escherichia. Nine isolates out of 153 were positive for the assays in vitro. Seeds coated with nine isolates had germination rate that ranged from 81.48% to 100%, while vigour index ranged from 682 to 140. Thus, the nine isolates possessed multiple plant beneficial traits and could be considered as promising plant growth promoting bacteria.

Keywords: Bacteria, Nigeria, Phytobeneficial, Rice, Rhizosphere,

RICE (*Oryza sativa* L.) is a common staple food in many homes throughout the world. In Africa, rice production has greatly increased as a result of numerous government

initiatives taken by several countries through increased production area and/or using high-yielding varieties and fertilizers (17). However, the deleterious effect posed by chemical fertilizers during rice production makes it unpleasant for continuous use.

Mader et al. (10) reported that rice growth is promoted and protected by plant growth promoting using rhizobacteria (PGPR) and can serve as alternative to pesticides, chemical nitrogen and phosphorus fertilizers during rice production. The mechanisms used by PGPR during growth, include, plant enhancement of plant nutrition through associated nitrogen fixation, solubilization phosphate phytosiderophore production (16). Plant growth promoting rhizobacteria suppress the growth phytopathogenic agents because of antagonism and competition mechanisms they elicit, and also able to induce systemic resistance thereby promoting plant defenses (4). They also help in rhizobial and mycorrhizal symbioses (22).

In Nigeria, the use of PGPR as biofertilizers and biopesticides towards improving rice production remain unutilized despite potential benefits in crop production and protection. However, Abiala et al.(1) identified some phytobeneficial indigeneous rhizobacteria using molecular methods (1). Abiala et al. (1) further molecular observed that

characterization of bacterial isolates using 16S rRNA genes was important in determining the taxonomy of beneficial rhizobacteria and the properties of related strains prior to field application. Thus, the present study was carried out to evaluate rhizobacteria associated with the rhizosphere of two Nigerian rice cultivars (Ofada and ITA 150) for their multiple phytobeneficial effects and also to determine phylogenetic relatedness between identified isolates.

MATERIALS AND METHODS Soil samples and bacterial isolation

Soil samples were collected from the Fadama farm rice field of the Federal University of Agriculture, Abeokuta, where two cultivars of rice (Ofada and ITA 150) were planted. The rhizosphere soils were collected from roots of 4 weeks old rice plants at 5-15 cm depth and placed in sterile plastic bags and stored at 4°C till usage. A 10-fold serial dilution where aliquots (100 μ L) of the 10⁻⁶ and 10⁻⁸ dilutions on Nutrient Agar (NA) supplemented with cycloheximide (100 µg/mL) to inhibit fungal growth was used. The colony forming units (CFU) for each plate was estimated after incubation and morphologically different isolates were selected, purified and the NA slants stored at 4°C.

Cultural characterization of bacterial isolates

Morphological and biochemical characteristics were used to characterize the bacterial isolates (2,3). Some of the biochemical tests carried out on the isolates includes; catalase, citrate utilization, capsule staining, Voges-Proskaeur, methyl red and sugar fermentation.

Assays for phytobeneficial abilities of isolates Indole Acetic Acid Production (IAA)

The detection of IAA production was carried out by inoculating pure bacterial isolates in nutrient broth tryptophan enriched with ug/mL), and incubated at 28°C for 48 h in a shaker incubator. The resultant culture was centrifuged at 4°C for 10 mins at 15000 revolutions per minutes (rpm) and two drops of orthophosphoric acid and 4 ml of the Salkowski's reagent (50 ml, 35 % of perchloric acid, 1 ml 0.5 M FeCl₃ solution) were mixed 2 ml of the supernatant. The light absorption of the mixture was estimated at 540 nm using a spectrophotometer, after the mixture was kept in a dark room for 20 min. The quantity of IAA produced by each isolate in µg/mL was determined by comparing the light absorption estimates to a standard curve. This experiment was carried out in triplicates for each bacterial isolate (19).

Phosphate solubilization

The Pikovskaya (1948) method for determining phosphate solubilization of the bacterial isolates was used by spot-inoculating the isolates on Pikovskaya media containing tricalcium phosphate in a plate and incubated at 28°C for 72 h. Halo zones surrounding the spotted colonies were determined, and the phosphate solubilization efficiency (PSE), expressed as a percentage using method according to Sharma *et al.* (18).

PSE (%) = $\frac{Halo\ zone\ diameter\ x\ 100}{Growth\ diameter}$ Seed germination bioassay

A bacterial concentration of 10⁶ cells/mL (10⁶ CFU/mL) prepared from 24 h old bacteria cultures were used to inoculate surface sterilized seeds (Ofada variety) by dipping in the bacteria suspension for 30 mins and then air dried on a laminar flow cabinet for 1 to 2 h (5). Nine bacteria coated seeds were placed on a sterilized moistened filter paper in a 9 diameter Petri dishes incubated for 7 days at 28°C. Germinated seeds were counted at day 7. Germination rate, average plumule and radical lengths as well as vigour index were calculated using described by the method International Seed Testing Agency (9).

Ammonia production

The bacterial isolates ability to produce ammonia was determined by inoculating 24 h old bacterial cultures on 10 ml nutrient broth in a rotatory shaker and incubated at 30°C for 48 h. Nessler's reagent (0.5 ml) was added to each tube and a change in colour from yellow to brown indicated a positive reaction (3).

Hydrogen cyanide (HCN) production

The Hydrogen Cyanide producing abilities of the isolates was detected by streaking each bacterial isolate on Nutrient broth amended with 4.4 g/L glycine. A 2% Sodium carbonate in 0.5% picric acid moistened Whatman filter was placed directly streaked

agar plate. Plates were incubated at 28°C for four days after being sealed with parafilm and HCN production was confirmed by the change in colour from orange to red (12).

Antagonism assay against phytopathogenic fungi

A 5 mm mycelia mat of *Fusarium* oxysporum and *Rhizoctonia solani* was placed in the centre of each Potato Dextrose Agar (PDA plate. Each bacterial isolate was streaked 3 cm away from the fungi on both sides of the fungus and the plates incubated for 5-7 days at 28°C (13). The zone of inhibition was observed and the inhibition index was estimated using the formula:

Inhibition index (%) =
$$\frac{(R1 - R2) \times 100}{R1}$$

Where R1=Radial growth of *F. oxysporum* in control plate, and, R2=radial growth of *F. oxysporum* interacting with antagonistic bacteria. The control was a plate with the phytopathogenic fungus only. All experiments were done in triplicates.

Ribosomal sequencing and phylogenetic relatedness of isolates Bacteria genomic DNA was extracted from bacterial isolates with PureLink Genomic DNA kits (Invitrogen Life Technologies, CA, USA) followed by amplification of 16S rRNA gene in 25 μL reaction premix using 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-ACCTTGTTACGACTT-3') primers (Lane, 1991). The conditions of PCR amplification were as follows: 15 min

at 96°C followed by 35 cycles of denaturing at 95°C for 30 sec, annealing at 51°C for 30 sec, and extension at 72°C for 2 min, and a final extension at 72°C for 7 min. PCR amplification was performed in a Thermocycler (Agilent Surecycler 8800, Belgium). The electrophoresis was used to resolve the amplified 1500-bp fragments on a 1% agarose gel. Sequencing was done after the PCR amplicons were purified by using the ABI 3730 Genetic Analyzer

at STAB VIDA Technologies, Portugal.

The sequenced data was cleaned on CLC 6.8.4 main workbench and aligned on ClustalX2 (21), followed Maximum construction of Likelihood (ML) phylogenetic tree (20) using MEGA 6.0 molecular replication software. The 1000 bootstrap analyses were used to determine the confidence values for individual branches. The sequenced data were analyzed with the BLASTN program of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) to determine the genus and species of the isolates. GeneBank sequences used reference were included in phylogeny study.

Statistical analysis

Descriptive statistics (mean and standard deviation) and Analysis of Variance (one-way) with was done using the statistical package for social sciences (SPSS) version 17.0 for Windows (SPSS, Chicago IL, U.S.A), while, significant means were separated using the Student-Newman-Keuls test.

RESULTS

Enumeration of bacterial isolates

One hundred and fifty three bacteria were isolated and identified from the rhizosphere of the two rice cultivars examined at 10⁸ CFU/g. ITA 150 rice variety had significantly higher 118

bacterial counts (5.18 log₁₀CFU/g) as compared to OFADA (4.12 log₁₀CFU/g) (Table 1).

Morphological and biochemical characteristics of bacterial isolates

There was significant variation in colony morphology. The colonies of the bacteria were round in shape with flat or raised elevation, undulating or smooth margin and cream to green pigmentation. Most bacterial isolates were flagellated with characteristics rod shape cell. All isolates reacted positively to Catalase and were Glucose fermenters while some of the isolates were Gram negative in reaction (Table 2).

Assays for phytobeneficial abilities of isolates IAA production ability

This assay was carried out on all 153 rhizosphere isolates. Different concentrations of pure IAA were used to prepare a standard curve and the curve was used to compute the IAA produced by the bacterial isolates assayed. Only nine isolates examined produced significant quantities of IAA ranging from 41 µg/mL to 72 µg/mL. Isolates L5 and ST1 produced the largest quantities of IAA at 72 μg/mL and 71 μg/mL respectively, while isolates. Sol1 and ST5 produced the least quantities of IAA 52 ug/mL and $41 \mu g/mL$ respectively (Table 3).

Phosphate solubilization

Screening of bacterial isolates for solubilization revealed phosphate variations among the identified isolates. Out of 153 isolates examined, 6 isolates solubilized tricalcium phosphate with efficiencies ranging between 128% and 200%, while 3 isolates did not solubilize the inorganic phosphate. Isolates ST1 and L7 produced the solubilization highest phosphate efficiency of 200% as compared to isolate ST7 with 128% solubilization efficiency. Isolates So14, So11 and R2 did not produce any halo zone on the Pikovskaya medium, and thus showed no phosphate solubilizing ability (Table 3).

HCN and Ammonia production

Five isolates out of 153 isolates examined produced HCN to varying degrees, while the four remaining isolates did not produce HCN in vitro. However, the degree of HCN production ranged from high intensity to weak intensity. Nine bacterial isolates assayed were positive for ammonia production (Table 3). Nine isolates examined inhibited Fusarium oxysporum and Rhizoctonia solani. Fusarium oxysporum had the highest inhibition index of 50% inhibition as observed in isolate L7, while isolate ST7 had 47.22% inhibition index. Isolate ST1 had the lowest inhibition index of 19.44%. On R. solani, isolate L5 had the greatest antifungal effect of 56.56% inhibition index, and isolate L7 had the lowest inhibition index of 18.18% (Table 3).

Seed germination bioassay

All nine isolates had varying degrees of influence on the germination rate of the Ofada rice variety used. While the untreated seeds of Ofada variety (Control) had the lowest germination rate of 70.37%, seeds coated with isolates So14 and ST1 had the least germination rate of 81.48%, while seeds treated with isolate R2 had the highest germination rate of 100%. The vigour index for each isolate was also computed from data obtained on the plumule and radicle lengths as well as the germination rate. It was observed that isolate R2 had the highest vigor index (682), while isolates ST5 and So14 had the least vigor index (241). All 9 isolates assayed had significantly higher vigor index values than the control (Table 4).

Molecular characterization

The genomic DNA of the nine bacterial isolates were amplified at 1500 base pairs when tested using polymerase chain reaction (Figure 1). Based on the 16S RNA gene sequencing and phylogenetic analyses, isolate So24 was identified as *Acinetobacter calcoaceticus*, So14 as *Staphylococcus saprophyticus*,

Soll as Escherichia coli, R2 as Staphylococcus aureus, ST1 as Bacillus subtilis, ST5 as Pseudomonas aeruginosa, ST7 as Klebsiella pneumoniae, as Citrobacter freundii and L5 as Enterobacter cloacae. The percentage sequence similarity ranged between 96% and 99%. The phylogenetic tree constructed showed that the isolates were clustered into two main groups; the firmicutes and the γ -proteobacteria (Figure 2).

Table 1: Mean total heterotrophic bacterial count of the rhizosphere of different rice cultivars

Cultivar	Total heterotrophic bacterial count (10 ⁶ log CFU/g)	Total heterotrophic bacterial count (10 ⁸ log CFU/g)
OFADA	7.20±3.07 ^a	4.12±2.44 ^a
ITA 150	9.33±3.07 ^b	5.18±2.44 ^b

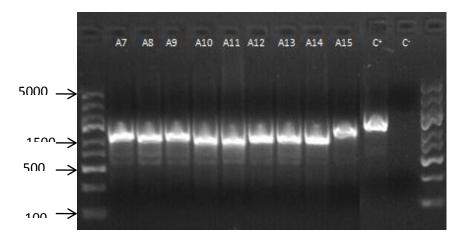
Values are mean \pm standard error of mean.

Table 2: Biochemical characteristics of bacterial isolates from rice varieties.

R A P O O N I R R P	ORG
	A 1 .
So2 - + + A A - A	Acinetobacter
4	sp
So1 + + + A 3	Staphylococcu
4	S
	saprophyticus
Sol - + + + + - A A A A	Escherichia
1	coli
R2 + + - + + A A A A	Staphylococcu
,	s aureus
ST1 + + + - + - + A - A A	Bacillus
	subtilis
	Pseudomonas
	aeruginosa
ST7 - + + + A A A A	Klebsiella sp
L5 - + + + + + A A A A	Enterobacter
	sp
L7 - + + + + - + - A A A	Citrobacter sp

KEY: GR= Gram stain, CA= Catalase, CP= Capsule stain, CO= Coagulase, MO= Motility, 498 IN= Indole, CI= Citrate, UR= Urease, MR= Methyl-red, VP= Voges proskeur, G= Glucose, L= Lactose, M= Mannitol, A= Acid production, + = POSITIVE, -= NEGATIVE.

Nigerian Journal of Plant Protection (NJPP) Vol. 33, No 1 June. 2019


Table 3: Determination of characteristics associated with plant growth promotion of bacterial strains isolated from rice rhizosphere.

Isolate	IAA (μg/mL)	Phosphate solubilization efficiency (%)	HCN production	Ammonia production	F. oxysporum inhibition	R. solani inhibition index (%)
So24	65.00±0.58b	138.90±9.30°			index (%) 22.22+0.52 ^h	45.45+0.52b
So24 So14	56.00±0.58°	138.90±9.30°	++	+ ++	38.89 ± 0.52^{d}	36.36±0.52°
Sol1	52.00±0.58 ^f	-	+++	++	30.55±0.52 ^g	34.55±0.52 ^d
R2	60.00 ± 0.58^{d}	-	-	+	36.11 ± 0.52^{e}	29.09 ± 0.52^{h}
ST1	71.00±0.58a	$200.00\pm15.00^{a,b}$	-	+++	19.44 ± 0.52^{i}	34.55±0.52e
ST5	41.00±0.58g	157.10±44.80 ^b	+	++	41.67 ± 0.52^{c}	32.73 ± 0.52^{f}
ST7	62.00±0.58°	128.60±3.50°	+++	++	47.22 ± 0.52^{b}	30.91 ± 0.52^{g}
L7	57.00±0.58e	$200.00\pm10.00^{a,b}$	-	+	50.00 ± 0.52^{a}	18.18 ± 0.52^{i}
L5	72.00±0.58a	183.30±27.80 ^b	+++	+	33.33 ± 0.52^{f}	56.36±0.52a

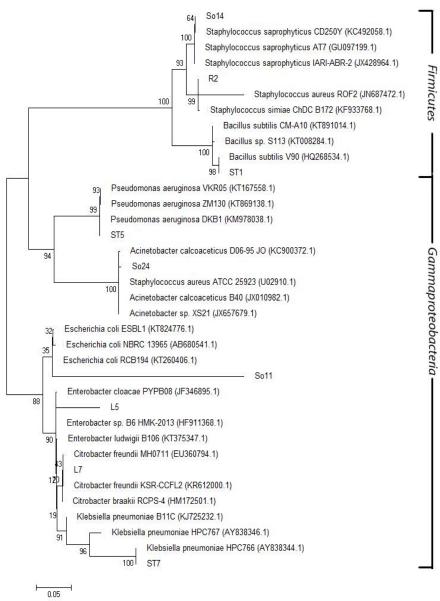

KEY: - = not detected. + = low. ++ = medium. +++ = high. Values are mean \pm standard error of mean. Values followed by different letters within a column indicates significant differences according to the Student-Newman-Keuls multiple-range test (α = 0.05)

Table 4: Beneficial effects of identified bacterial isolates on Ofada seed germination and vigour index.

Isolate	Germination rate	Mean plumule	Mean radicle (cm)	Vigour index
	(%)	(cm)		
Control	70.37 ± 1.67^{d}	1.1 ± 0.55^{d}	0.9 ± 0.57^{c}	140.74±27.35°
So24	81.48 ± 2.94^{c}	1.63 ± 0.12^{c}	1.45 ± 0.13^{d}	250.96 ± 10.84^{d}
So14	96.29 ± 4.00^{b}	2.3 ± 0.85^{b}	2.61 ± 0.18^{b}	472.78±41.31°
So11	96.29 ± 4.00^{b}	2.3 ± 0.85^{b}	2.61 ± 0.18^{b}	472.78±41.31°
R2	100.00 ± 5.00^{a}	3.91 ± 0.20^{a}	2.91 ± 0.51^{b}	682.00 ± 71.53^{a}
ST5	85.19±8.01°	1.38 ± 0.16^{d}	1.45 ± 0.00^{d}	241.09 ± 4.81^{d}
ST1	81.48 ± 2.94^{c}	1.72 ± 0.04^{c}	1.58 ± 0.16^{d}	268.88 ± 8.03^{d}
ST7	96.29 ± 4.00^{b}	2.34 ± 0.09^{b}	2.61 ± 0.18^{b}	476.64±30.51°
L7	96.29 ± 4.00^{b}	2.63 ± 0.04^{b}	3.78 ± 0.38^{a}	617.22±22.13 ^b
L5	81.48±2.94°	1.8 ± 0.30^{c}	1.85 ± 0.85^{c}	297.40±49.37 ^d

Plate 1: Gel electrophoresis of the amplified PCR profiles of bacterial isolates run in a 1% agarose gel using 2 μL of PCR product and 5 μL of DNA ladder. A7 represents isolate L5, A8 represents isolate L7, A9 represent isolate So14, A10 represents isolate R2, A11 represents isolate ST5, A12 represents isolate So24, A13 represents isolate ST1, A14 represents isolate So11, and A15 represents isolate ST7. C⁺ represents positive control and C⁻ represents negative control (Distilled water).

Figure 1: Phylogenetic relationship of bacterial isolates based on 16S rRNA genes and inferred using the maximum likelihood method. Type strains used for comparison are given. Numbers above each node are bootstrap confidence levels (expressed as percentages) generated from 1000 bootstrap trees. The GeneBank accession number is given in parentheses for each organism.

DISCUSSION

The evaluation of rhizosphere bacteria of rice plant with potential of improving its growth and overall cultivation was undertaken in this The total heterotrophic bacterial counts of the rice cultivars examined showed significant differences as ITA 150 possessed the higher bacterial counts as compared to OFADA. This difference could be due to the quality and quantity of the metabolites from plant roots. Haichar et al. (8) reported that the constituents of a metabolite depend on the varieties, the length at which it is stressed, the development stage and possibility of differences on the root structure which could be as a result of differences in the bacterial community composition.

dominant bacteria The genera identified using morphological and biochemical tests were Acinetobacter, Bacillus, Pseudomonas, Klebsiella, Enterobacter. Staphylococcus, Citrobacter and Escherichia and this is in agreement with studies of Mwajita etal.(11)and Gopalakrishnan et al. (7). Gram negative bacteria were in greater abundance in the rhizosphere of the rice varieties examined as compared to Gram positive bacteria and this confirmed the earlier report of Elbeltagy et al. (6) and that of Ngoma et al. (12).

In this study, all bacteria tested produced IAA in the presence of tryptophan, although at different concentrations and suggested to be IAA producing rhizobacteria and this is in agreement with earlier report that root elongation and plant growth are promoted by IAA-producing bacteria ST5 Isolates and corresponding to Pseudomonas aeruginosa and Enterobacter sp. produced the largest concentration of IAA (72 $\mu g/mL$ and 71 $\mu g/mL$ respectively) while Bacillus sp. produced the lowest concentration of IAA at 41 µg/mL. This result has implication on the growth of rice on lateral adventitious and formation, primary root growth and primary root elongation as reported by Xie *et al.* (28).

This study also identified 6 bacteria; Pseudomonas aeruginosa, Citrobacter Klebsiella sp. Enterobacter sp., Bacillus sp. and Acinetobacter sp. that were able to solubilize tri calcium phosphate (Ca₃PO₄) in vitro (23,24) with solubilization efficiencies ranging from 136 % to 200 %. Earlier report suggested that many agricultural soils were low in phosphorus which is an essential plant macronutrient which these bacteria would be able to release through solubilization (24). On the other hand, Staphylococcus saprophyticus, Escherichia coli and Staphylococcus aureus showed no halo zone on the Pikovskaya agar plates and thus no phosphate solubilization efficiency.

This study observed that all bacteria improved seed germination rate when compared with the control. The nine bacterial improved the growth parameters (plumule, radicle and vigour index) of the inoculated rice seeds as compared to the uncoated control. The ability of certain bacterial to increase seed emergence, vigour index and other plant growth parameters suggests an increased of IAA production and other phytohormones and were implicated in nutrient acquisition by plants. It observed IAA could also promote the activity of specific enzymes ensures that germination with increased plumule and radicle length. Early seedling establishment is possible through seed inoculation with IAA-producing rhizobacteria.

Production of HCN was also observed with *Citrobacter* sp. and *Klebsiella* sp. while *Staphylococcus aureus*, *Staphylococcus saprophyticus*, *Pseudomonas aeruginosa* did not produce it. The production of ammonia by some of the bacteria is also an important trait of plant growth-promoting bacteria and this strengthens plant disease resistance mechanism (26,29). The

ability of these bacteria to produce HCN has indirect influence on plant growth (25).

The inhibition index of R. solani ranged from 18% to 56% Enterobacter highly sp. was antagonistic to R. solani, while Citrobacter sp. was not least effective. Inhibition index against Fusarium ranged from 19% to 50% as Citrobacter sp. was also highly antagonistic to this pathogen. The differential rates of fungal inhibition by the bacteria species indicates that rhizobacteria differ from one another through the effects on hosts and kinds of antifungal substances produced (27). This is also in agreement with Noumavo et al., (14) that antifungal metabolites and or lytic enzymes produced by PGPB might responsible for the *in vitro* inhibition zones and reduced fungal growth by certain PGPR.

study was In conclusion. this successful in screening bacterial isolates from rice rhizosphere possessing multiple plant growthpromoting traits, However, of the nine isolates, isolates L7, ST7 and R2 corresponding to Citrobacter freundii, Klebsiella pneumoniae and Staphylococcus aureus showed the best abilities to promote plant growth in vitro as seen by the results of the various assays conducted, and this

suggests the possibility of being used as inoculant for plant growth development. Further studies are needed *in vivo* to ascertain the phytobeneficial abilities of some of the bacteria used in this study.

REFERENCES

- 1. Abiala MA, Odebode AC, Hsu SF, Blackwood CB. 2015. Phyto beneficial Nigerian soils. *Appl Environ Microbiol* 81:4736-4743.
- 2. Bergey DH, Holt JG, Noel RK. 1994. Bergey's Manual of Systematic Bacteriology. 19th ed. Maryland, USA, Williams & Wilkins.
- 3. Cappuccino JG, Sherman N.
 1992. Microbiology: A
 laboratory manual. California,
 USA, The Benjamin
 Cummings Publishing
- 4. Couillerot O, Prigent-Combaret Caballero-Mellado J, Mënne-Loccoz Y. 2009. Pseudomonas fluorescens and closely-related fluorescent Pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol. 48:505-512.
- **5. Dey R, Pall KK, Bhatt DM, Chauhan SM. 2004.** Growth promotion and yield enhancement of peanut (*Arachis hypogea* L.) by application of plant growth-promoting rhizobacteria. *Microbiol. Res.* 159:371-394.

- 6. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617-629.
- 7. Gopalakrishnan S, Humayun P, Kiran BK, Kannan IG, Vidya MS, Deepthi K,
- 8. Rupela O. 2010. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World Microbiol Biotechnol. 27:1313-1321.
- 9. Haichar FE, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W. 2008. Plant host habitat and root exudates shape soil bacterial community structure. *ISME J.* 2: 1221-1230.
- **10. International Seed Testing Agency** 1999. International rules for seed testing. *Seed Science and Technology* 27:333.

- 11. Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS. 2012. Inoculation of root
- microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. *Soil Biol Biochem.* 43:609-619.
- 12. Mwajita MR, Muraje H, Tani A, Kahangi ME. 2013. Evaluation of rhizosphere.
- rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. *SpringerPlus* 2:1-9.
- **13. Ngoma L, Esau B, Babalola OO. 2013.** Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth-promoting activity in Molelwane Farm, Mafikeng, South Africa. *Afr. J. Biotechnol* 12:4105-4114.
- 14. Noori MS, Saud HM. 2012. Potential plant growth-promoting activity of *Pseudomonas* sp isolated from paddy soil in Malaysia as biocontrol agent. J Plant Pathol Microbiol 3, 120. https://doi: 10.4172/2157-7471.1000120.
- 15. Noumavo PA, Agbodjato NA, Gachomo EW, Salami HA, Farid BM, Adjanohoun A, Kotchoni SO, Lamine BM. 2015. Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease

- resistance. *Afr. J. Biotechnol* 14:811-819.
- of Pseudomonas putida indoleacetic acid indevelopment of the host plant root system. Appl Environ Microbiol. 68:3795-3801.
- 17. Richardson AE, Baréa JM, McNeill AM, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. *Plant Soil* 321:305-339.
- 18. Sere Y, Fargette D, Abo ME, Wydra K, Bimerew M, Onasanya A, Akator SA. 2013. Managing the major diseases of rice in Africa. In: Wopereis, M.C. (Ed.) Realizing Africa's Rice Promise. Oxfordshire, UK, CAB International, pp 213-228.
- 19. Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R. 2007. Effect of phosphate solubilizing bacteria on the germination of *Cicer arietinum* seeds and seedling growth. *J Herb Med Toxicol.* 1:61-63.
- **20. Sharma T, Navin K, Nishan R. 2012.** Isolation, screening and characterization of PGPR isolates from rhizosphere of

- rice plants in Kashipur region (Tarai region). *Biotechnology International* 5:69-84.
- 21. Tamura K, Peterson D, Peterson N, Stecher G, Nei **M, Salne KS. 2011.** MEGA5: Molecular **Evolutionary** Genetics **Analysis** using Maximum Likelihood. Evolutionary Distance, and Parsimony Maximum Methods. Mol. Biol. Evol. 28:2731-2739.
- 22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin FH. 1997. The Clustal-X
- windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucl. Acids Res.* 25:4876-4882.
- 23. Vacheron J, Desbrosses G, Bouffaud M, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4:356. https://doi:10.3389/fpls.2013.0 0356
- **24. Verma SC, Ladha JK, Tripathi AK. 2001.** Evaluation of plant growth-promoting and colonization ability of endophytic diazotrophs from deep water rice. *Journal of Biotechnology* 91:127-141.

- 25. Wakelin S, Warren P, Harvey P, Ryder M. 2004. Phosphate solubilization by
- Penicillium spp closely associated with wheat roots. Biol. Fert. Soil 40:36-43.
- **26.** Wani PA, Khan MS, Zaidi A. **2007.** Effect of metal tolerant plant growth-promoting *Bradyrhizobium* sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. *Chemosphere* 70:36-45.
- **27. Whipps JM. 2001.** Microbial interactions and biocontrol in the rhizosphere. *J. Exp. Bot.* 52:487-511.
- **28.** Williams GE, Asher MC. 1996. Selection of rhizobacteria for the control of *Phytium ultimum* and *Aphanomyces cochiliodes* on sugarbeet seedlings. *Crop Prot.* 15:479-486.
- **29. Xie H, Paternak JJ, Glick BR. 1996.** Isolation and characterization of mutants of the plant growth promoting rhizobacterium *Pseudomonas putida* GR12-2 that overproduce IAA. *Curr. Microbiol.* 32:67-71.
- **30.** Yildiz HN, Handan HA, Dikilitas M. 2012. Screening of rhizobacteria against
- Fusarium oxysporum f. sp. Melongenae; the causal agent of wilt disease of eggplant. Afr J Microbiol Res. 6:3700-3706.