FIRST REPORT OF TOMATO BUSHY STUNT VIRUS (TOMBUSVIRUS) INFECTING IRRIGATED TOMATO (Solanum lycopersicum [L.]) IN NORTHERN NIGERIA

*1,2 Abraham, P., 2 Banwo, O. O., 2 Kashina, B. D. and 2 Alegbejo, M. D. 1 Department of Horticulture, Federal College of Horticulture Dadin Kowa, Gombe, Nigeria.

²Department of Crop Protection/IAR, Ahmadu Bello University Zaria, Nigeria. *Corresponding author's address: Email: peterabraham06@yahoo.com; Phone number: +2347039566818.

SUMMARY

The detection of Tomato bushy stunt virus (TBSV) infecting tomato plants in Sudan savanna region (Gombe, Jigawa and Kano) of Nigeria is reported in this study. In 2017 and 2018 dry seasons, three farms each from three major tomato producing Local Government Areas (LGAs) in each state were surveyed. Forty symptomatic and asymptomatic tomato leaf samples per farm (n=2160) were collected in five quadrants measuring 4m x 4m in size and indexed against TBSV using double antibody sandwich enzyme-linked immunosorbent serological assay. The results obtained indicated that TBSV occurred in all the states surveyed. In Gombe, TBSV incidence was found to be significantly higher (P = 0.05) in Yamaltu-Deba LGA (16.0 %) followed by Akko (14.0 %) while Kaltungo had the lowest incidence of 12.1%. Kura LGA had the highest virus incidence (18.0 %) followed by Garun Mallam (10.7%) while the least incidence (6.5 %) was recorded at Bagwai in Kano State. In Jigawa, the highest virus incidence of 13.0 % was recorded at Kirikasama LGA followed by Kazaure (9.5%) while Hadejia had the least incidence of 5.2%. Among the States surveyed for TBSV, Gombe had the highest (P = 0.05) virus incidence (14.0 %) followed by Kano (11.7 %) while the least incidence (9.2%) was recorded in Jigawa. This is the first report of TBSV on tomato in northern Nigeria. Awareness programs need to be organized for tomato farmers on the incidence and management of the virus disease.

Keywords: *Tomato bushy stunt virus*, detection, tomato, DAS-ELISA, Nigeria.

Tomato bushy stunt virus (TBSV), type member of the genus Tombusvirus: Tombusviridae), is a unipartite, icosahedral (T= 3) singlestranded positive sense RNA virus with 30 nm in diameter (5; 21; 30). It has a wide host range but principally attacks economically important solanaceous crops (23) causing several epidemic disease outbreaks in Solanum lycopersicum (6; 10; 12; 17), Capsicum annuum (6), and Solanum melongena L. (6; 17). There is no known biological vector of TBSV, although virus incidence is often associated with the soil and irrigation water (22). The virus is also transmitted either naturally through infected seeds. pollen, and propagative materials or mechanically by the use of contaminated cutting tools (9; 18; 23). Leaves on plants infected with Tomato bushy stunt virus are small in size, cupped, and curled downward. The youngest leaves are twisted and exhibit apical necrosis. Necrosis may develop, killing the young shoot. A proliferation of lateral shoots leads to an overall stunting and bushy leaves appearance. Lower chlorotic with a purple tinge and twisted over or may be completely reversed (reviewed by Abraham et al. (2)). TBSV has been reported to be damaging to tomato both in the field and greenhouses (13). Tomato fruit yield is significantly reduced if virus infection occurs early in the season. 130

Yields are reduced as fruits become smaller and show chlorotic rings and blotches that lower the economic value of the crop (3; 4; 17; 30). Yield losses as high as 80% due to TBSV attack in tomato have been reported (12).TBSV is widespread and causes economically important diseases in several horticultural crops (22) in both tomato fields and greenhouses in South America (25), California (12), Morocco (10), Tunisia (6) and Egypt (13). In Nigeria however, limited information exits on the occurrence and spread of the virus in the northern part of the country where the bulk of tomato production lies. Hence, we report the occurrence and distribution of TBSV in northern Nigeria.

MATERIALS AND METHODS Field survey and sampling

Field survey and sampling conducted to determine the occurrence and spread of TBSV infecting tomato plants in Sudan savanna region (Gombe, Jigawa and Kano States) of Nigeria during the 2017 and 2018 dry seasons. These three States are among the major and leading commercial tomato producing states in Nigeria (11). Three farms each from three major tomato producing local government areas (LGAs) of each State (Gombe: Akko, Kaltungo and Yamaltu-Deba LGAs; Jigawa: Hadeja, Kirikasama and Kazaure LGAs while in Kano: Garun Mallam, Bagwai and Kura LGAs) surveyed. **Forty** were symptomatic and asymptomatic tomato leaf samples from each farm (n=2160) were collected in a 4m² x 4m² sized-quadrant set at the four corners and one at the centre of each field (14) and indexed against TBSV using double antibody sandwich enzyme-linked immunosorbent serological assay (DAS-ELISA). Information on the coordinates, size, surrounding crops and some cultural practices of each field documented (Tables 1. 2, Collected samples were individually wrapped in polyethylene bags, labeled, stored in an ice chest and transported to the Virology Laboratory of the Department of Crop Protection, Ahmadu Bello University Zaria for analyses. Samples were stored at 4 °C prior to diagnosis.

Serological assay

Serological tests were conducted for the detection of TBSV in the collected tomato leaf samples using the DAS-ELISA as specified by the supplier (Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und ZellkulturenGmbh, Braunschweig, Germany) of the detection kits. The antigen-antibody reactions were detected and optical density (OD) of each well was measured after 1 h **ELISA** plate reader using an Uniequip (Martinseed, Germany) at a wavelength of 405 nm (7). Sample values at least twice that of the negative control (check) were rated positive (16). Average incidence (%) for the two years was calculated using the formula:

Virus incidence (%) = $\frac{\text{Number of positive samples/farm}}{\text{Total number of samples examined/farm}} \times 100$

RESULTS

The results obtained in Gombe State showed that TBSV incidence was significantly higher (P = 0.05) in Yamaltu-Deba LGA (16 %) followed by Akko (14.0 %) while Kaltungo had the lowest incidence of 12.1% (Fig. 1). Kura LGA had the highest virus incidence (18.0 %) followed by Garun Mallam (10.7 %) while the least incidence (6.5 %) was recorded at Bagwai in Kano State (Fig. 2). In Jigawa, the highest virus incidence of 13.0 % was recorded at Kirikasama

LGA followed by Kazaure (9.5%) while Hadejia had the least incidence of 5.2 % (Fig. 3). Among all the States surveyed for TBSV, Gombe had the highest (P = 0.05) virus incidence (14.0%) followed by Kano (11.7%) while the least incidence (9.2%) was recorded in Jigawa (Figure 4).

Nigerian Journal of Plant Protection (NJPP) Vol. 33, No 1 June. 2019

Table 1: Symptoms of virus diseases and cropping information of the locations surveyed in Gombe State during the 2017 and 2018 dry seasons.

LGA	Location	Coordinates	Farm size (Ha)	Variety of tomato	Duration of cultivatio n	Source of seed	Symptoms observed	Sanitary condition	Surrounding crops	Crop growth Stage	Cropping pattern
Akko	Gadawo	N10 ⁰ 02.919, E011 ⁰ 16.876	0.526	UTC/Sy ria	20 years	Previous season	C, LC, M, S	Weedy	Pepper, Tomato, Okra	Vegetative	Mixed cropping with Okra, pepper
	Kembu- Gingin Gada	N10 ⁰ 02.916, E011 ⁰ 17.169	1.420	Syria	25 years	Market vendors	C, S, LC, N, M,	Weedy	Okra, tomato	Flowering	Mixed cropping with Okra
	Kembu	N10 ⁰ 02.353, E011 ⁰ 17.763	0.427	Syria/ Tandino	>60 years	Previous season	C, S, LC, M,	Weeded	Tomato, pepper, watermelon	Vegetative	Sole cropping: rotate with water melon and pepper
Kaltun go	Gujuba	N09 ⁰ 58.008, E011 ⁰ 18.352	0.103	Syria	4 years	Market vendors	N, C, LC, M,	Weedy	Pepper, maize, Chocories	Flowering	Sole cropping: rotate with pepper and maize
	Awak	N09 ⁰ 55.666, E011 ⁰ 26.922	1.23	Roma VF	8 years	Previous season	C, LC, M, S, N	Weeded	Tomato, sugarcane	Vegetative	Mixed cropping with cucumber
	Dogon ruwa	N09 ⁰ 57.870, E011 ⁰ 28.399	1.51	Tandino	7 years	Previous season	N, C, LC, M, T	Weedy	Tomato, Okra, Onion, Maize	Vegetative	Mixed cropping with okra, pepper
Yamalt u-Deba	Dadinko wa	N10 ⁰ 17.802, E011 ⁰ 30.606	0.442	Syria	5years	Previous season	C,T, S, LC, M,	Weedy	Sweet melon, maize	Vegetative	Mixed cropping with maize and sweet melon
	FCHTR F	N10 ⁰ 18.159, E011 ⁰ 31.148	0.340	Syria	15 years	Previous season	C, LC, M, S, T	Weedy	Okra, pepper	Flowering	Mixed cropping with okra
	Kwadon	N10 ⁰ 16.147, E011 ⁰ 31.181	1.12	Syria	30 years	Previous season	C, LC, M, S, T, N	Weeded	Tomato, onions, maize	Flowering	Mixed cropping with maize

C= chlorosis, LC= Leaf curl, M= Mosaic, N= Necrosis, S= Stunting, T= Twisting. Source: Field Survey, (2017 and 2018).

Nigerian Journal of Plant Protection (NJPP) Vol. 33, No 1 June. 2019

Table 2: Symptoms of virus diseases and cropping information of the locations surveyed in Kano State during the 2017 and 2018 dry seasons.

LGA	Location	Coordinates	Farm size (Ha)	Variety of tomato	Duration of cultivation	Source of seed	Symptoms observed	Sanitary conditio n	Surrounding crops	Crop growth stage	Cropping pattern
Bagwai	Dabino- Center 5	N12 ⁰ 07.394, E008 ⁰ 13.611	0.1024	Roma VF	15 years	Seed Company	C, S, LC, M,	Weeded	Onion, Tomato, Maize	Fruiting	Mixed cropping with green peas, onions and groundnut
	Dabino- Center 4	N12 ⁰ 07.481, E008 ⁰ 12.699	1.720	UTC	17 years	Seed Company	C, LC, M, LC	Weedy	Tomato, Maize, Groundnut	Vegetative	Mixed cropping with maize and green peas
	Dabino- Center 3	N12 ⁰ 07.544, E008 ⁰ 12.729	1.050	Dan Jos	7 years	Seed Company	S, LC, T, M,	Weeded	Tomato, Cowpea, Maize	Vegetative	Mixed cropping with green peas and groundnut
Garun Mallam	Chiromaw a	N11 ⁰ 35.894, E008 ⁰ 24.742	2.103	Roma VF	15 years	Market vendors	C, N, LC, M,	Weedy	Tomato, maize,	Vegetative	Mixed cropping with green peas
	Yantomo	N11 ⁰ 37.594, E008 ⁰ 24.987	0.824	UTC	>15years	Previous season	C, M, LC, S,	Weeded	Tomato, maize, green peas and cucumber	Flowering	Mixed cropping with Raddish, pumpkin and cucumber
	Kadawa	N11 ⁰ 38.299, E008 ⁰ 24.903	2.120	Roma VF	7 years	Market vendors	M, LC, N,	Weedy	Tomato, water melon, Maize, peas	Vegetative	Mixed cropping with green peas and maize
Kura	Butalawaf adama 1	N11 ⁰ 47.309, E008 ⁰ 25.529	1.420	UTC (Inster)	27years	Previous season	C, LC, N, S, M	Weedy	Maize, Tomato, rice	Fruiting	Mixed Cropping with Maize, Pepper and Cabbage
	Butalawaf adama 2	N11 ⁰ 47.341, E008 ⁰ 25.507	0.540	UTC (Inster)	10years	Market vendors	N, C, LC, T, M	Weedy	Tomato, pepper	Fruiting	Mixed cropping with Pepper and maize
	Butalawaf adama 3	N11 ⁰ 47.390, E008 ⁰ 25.333	0.791	UTC (Inster)	15 years	Previous season	S, LC, M, C	Weedy	Tomato, maize, Cassava	Vegetative	Mixed cropping with maize and cassava,

C= Chlorosis, LC= Leaf curl, M= Mosaic, N= Necrosis, S= Stunting, T= Twisting. Source: Field Survey, (2017 and 2018). Source: Field Survey, (2017 and 2018).

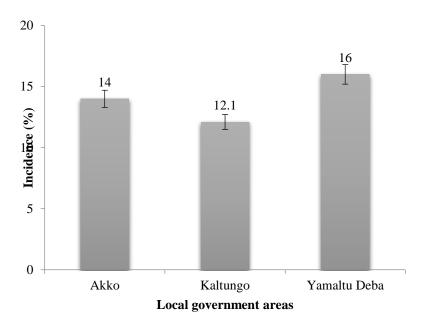
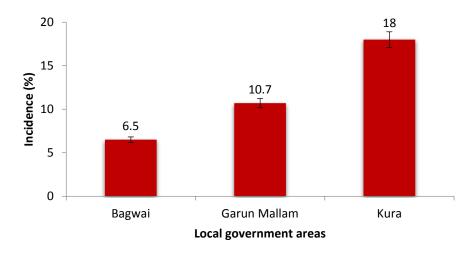
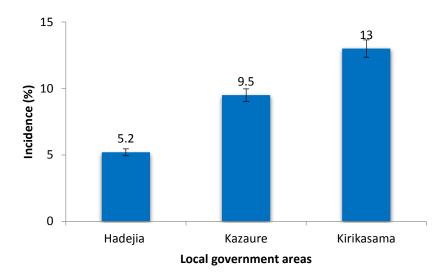

Nigerian Journal of Plant Protection (NJPP) Vol. 33, No 1 June. 2019

Table 3: Symptoms of virus diseases and cropping information of the locations surveyed in Jigawa State during the 2017 and 2018 dry seasons.


LGA	Location	Coordinates	Farm size (Ha)	Variety of tomato	Duration of cultivation	Source of seed	Symptoms observed	Sanitary condition	Surrounding crops	Crop growth Stage	Cropping pattern
Hadejia	Mai Alkama	N12 ⁰ 26.120, E 10 ⁰ 35. 200	1.1024	Tandino	25 years	Previous season	C, N, LC, S,	Weedy	Onion, tomato	Vegetative	Mixed cropping with pepper
	Hadejia	N12 ⁰ 26.379, E 10 ⁰ 01. 173	0.620	UTC	6 years	Previous season	LC, M, N	Weedy	Tomato, pepper	Vegetative	Sole cropping: Rotate with pepper and onion
	Yayari	N12 ⁰ 26.133, E10 ⁰ 02.387	3.510	UTC	30 years	Previous season	C, LC, M,	Weeded	Tomato, pepper	Fruitin g	Mixed cropping with okra and pepper
Kazaure	Dabaza	N12 ⁰ 37.924, E008 ⁰ 33.248	1.376	UTC	8 years	Seed Company	S, C, N, M,	Weedy	Tomato, pepper, cassava	Fruiting	Sole Cropping: Rotate with pepper
	Dan Dutsi- Sadua	N12 ⁰ 36.400, E008 ⁰ 33.966	1.571	UTC (Graptor)	25 years	Seed Company	C, S, LC, M, N	Weedy	Tomato and pepper	Fruiting	Mixed cropping with Okra, maize and cucumber
	Kurfi	N12 ⁰ 36.670, E008 ⁰ 35.076	0.610	Roma VF	10 years	Previous season	C, LC, M, N	Weedy	Tomato, Maize	Fruiting	Sole Cropping: Rotate with pepper
Kirikasa ma	Tarabu	N12 ⁰ 30.646, E010 ⁰ 10.584	1.735	UTC	25 years	Previous season	N, C, LC, S, T	Weeded	Pepper, tomato	Fruiting	Sole Cropping: Rotate with pepper
	Tarabu- Kumoyo	N12 ⁰ 30.566, E010 ⁰ 09.693	0.834	UTC	30years	Previous season	C, S, M, T, LC, N	Weedy	Maize	flowerin g	Mixed cropping with rice and maize
	Marma Giryo	N12 ⁰ 39.730, E010 ⁰ 21.530	0.231	Roma VF	>30 years	Previous season	C, LC, M, S, N	Weedy	Tomato, rice, maize	Fruitin g	Mixed cropping with maize

C= Chlorosis, LC= Leaf curl, M= Mosaic, N= Necrosis, S= Stunting, T= Twisting. Source: Field Survey, (2017 and 2018).


Source: Field Survey, (2017 and 2018).

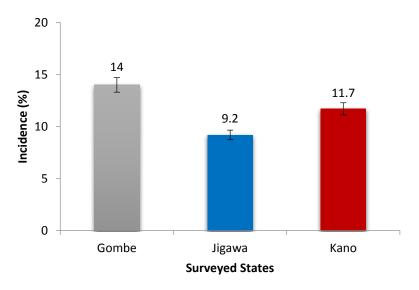

Figure 1: Incidence of *Tomato bushy stunt virus* in three local government areas of Gombe State during the 2017 and 2018 dry seasons. Bars indicate standard error of means at 5% probability level.

Figure 2: Incidence of *Tomato bushy stunt virus* in three local government areas of Kano State during the 2017 and 2018 dry seasons. Bars indicate standard error of means at 5% probability level.

Figure 3: Incidence of *Tomato bushy stunt virus* in three local government areas of Jigawa State during the 2017 and 2018 dry seasons. Bars indicate standard error of means at 5% probability level.

Figure 4: Incidence of *Tomato bushy stunt virus* in three States of northern Nigeria during the 2017 and 2018 dry seasons. Bars indicate standard error of means at 5% probability level.

DISCUSSION

The study reports that TBSV occurs naturally and infecting tomato plants in northern Nigeria. Reports on the occurrence of TBSV have been documented with varying incidences from different countries of the world (8; 13; 15; 24; 27). The serological detection of TBSV in all the tomato farms surveyed further confirmed that the observed disease symptoms (Plate I) were induced by the virus as earlier reported by Hafez et al. (13). Higher incidence of TBSV observed from three local government (Yamaltu Deba (Fig. 1), Kirikasama (Fig. 2), Kura (Fig. 3)) and Gombe State (Fig. 4) could be attributed to the use of TBSV borne seeds sourced from previously harvested tomato fruits (Tables 1, 2 & 3). TBSV has been reported as an important seedborne virus in tomato (15, 22, 28) with transmission efficiency range of 50 - 65 % (29). The continuous cropping of tomato crops over a long period which maintains the cycle and favours inoculum build-up of the virus in the soil could also be a factor for the prevalence of virus incidence in the surveyed regions since TBSV has been reported to be soil-borne (27). Tomlinson and Faithful (29) and Gerik et al. (12) have demonstrated that transplanting of tomato seedlings in TBSV contaminated soils caused an average infection incidence of Manabayeva et al. (19) 55%.

established the ability of soil-borne TBSV to cause systemic infections in tomato and tobacco through the roots without requiring the virus coat protein but the host defense suppressor identified as P19. A common practice of burying or leaving infected tomato stands in the fields by farmers in the surveyed region could further have encouraged inoculum build-up the virus in soil (1). Syria and UTC tomato varieties were commonly cultivated in all the with higher localities **TBSV** incidence (Tables 1, 2 & 3) which suggests that the varieties are readily susceptible to the virus attack compared to other varieties. Infections of susceptible plant hosts by TBSV have been reported to cause severe disease epidemic under field conditions (4: 6: 23). Moreover, the bulk of tomato cultivation in the surveyed areas is carried out during the dry season and solely relying on surface irrigation which has been successful implicated for transmission of TBSV in crops in the fields (26; 29).

CONCLUSION

To the best of our knowledge this is the first report of TBSV infecting field grown tomato in northern Nigeria. Gombe state had the highest incidence of the virus. Farmer's cultural practices such as source of seeds, varietal selection, cropping pattern and system, type of irrigation system adopted and farm sanitary measures could be said to be key factors influencing the occurrence and spread of the virus in the region.

REFERENCES

- 1. Abraham, P., Banwo, O. O., В. D. Kashina. and Alegbejo, M. D. 2019. First Report of Tomato bushy stunt virus(Tombusvirus) Infecting Irrigated Tomato (Solanum lycopersicum [L.]Northern Nigeria. Paper presented at the 44th annual conference of the NSPP, held at the Federal University Oye-Ekiti, Ikole Campus, Nigeria 7th-12th April, 2019. p. 30.
- 2. Abraham, P., Banwo, O. O., Kashina, B.D. and Alegbejo, M. D. 2019. Status of tomato viruses in Nigeria. *FUDMA Journal of Sciences*, 3(3): pp. 482-494.
- 3. Alegbejo, M. D. 2015. Virus and virus-like diseases of crops in Nigeria. Ahmadu Bello University Press, Zaria. 273pp.
- 4. Ali, A. S., Fattouh, F. A. and Fathy, R. M. 2015.
 Physiological Responses to Infection by Tomato bushy stunt virus in Different Host Plants. International Journal of Agriculture and Crop Sciences 8 (3), 438-448.

Awareness programs need to be organized for tomato farmers on the incidence and integrated management of the virus.

- 5. Brunt, A.A., Crabtree, K.,
 Dallwitz, M. J., Gibbs, A. J.,
 Watson, L. and Zurcher, E.
 J. 1996. Plant Viruses Online:
 Descriptions and lists from
 VIDE Database. CAB
 International, Wallingford,
 UK, 1484 pp.
- 6. Cherif, C. and Spire, D. 1983. Identification du virus derabourgrissementbuissoneu x de la tomate (tomato bushy stunt virus) enTunisie sur tomate, piment e aubergine: Quelquescharactéristiques de la souchetunisiennes. *Agronomie* 3: 701 706.
- 7. Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. *Journal of General Virology* 34: 475-483.
- 8. Cuadrado, I. M., Guerra-Sanz, J. M., Garcia, C. Aguilar, M. I. and Moreno, P. 1995. First Report of *Tomato Bushy Stunt Virus* in Almeria (Spain). *Plant Dis.* 79:1186. DOI: 10.1094/PD-79-118

- 9. DANR (Division of Agriculture and **Natural Resources**) **2016.** Tomato: Tomato Bushy Pathogen: **Tomato** bushy stunt virus of the tombusvirus group. 2016 Regents of the University of CaliforniaDivision of Agriculture and Natural ResourcesNondiscrimination Statement.UC Pest Management Guidelines. Accessibility /PMG/U/D-TO-UNKA-FO.008.html revised: June 24, 2016. UC ANR Publication 3470.
- **10. Fischer, H. U. and Lockhart, B. E. L. 1977.** Identification and comparison of two isolates of tomato bushy stunt virus from pepper and tomato in Morocco. *Phytopathology* 67: 1352-1355.
- **11. GEMSA4. 2016.** *Mapping of* Tomato Clusters in Northern Nigeria. Growth and Employment in States – Wholesale and Retail Sector (GEMSA4) Project funded by the DFID/UKAID and the World Bank. St. James House Cadastral Zone 167 Adetokumbo Ademola Crescent Wuse II, Abuja, Nigeria, 38pp. www.gems4nigeria.com, Retrieved on

- Wednesday, October 05, Y.17.PM 0:10:15
- 12. Gerik, J. S., Duffus J. E., Perry R., Stenger D. C., and Van Maren A. F. 1990. Etiology of tomato plant decline in the California desert.

 Phytopathology, 80: 1352 1356.
- 13. Hafez, E. E. E., Ghada A. Saber, and Fattouh, F. A. 2010.

 Tomato Bushy Stunt Virus Infecting Lycopersicumes cule ntum". Zeitschriftfür Naturfors chung C. 65c: 619 626.
- 14. Kashina, B. D., Mabagala, R. B. and Mpunami, A. A. 2002.

 Reservoir weed hosts of *Tomato yellow leaf curl* begomovirus from Tanzania. *Archives of Phytopathology and Plant Protection*, 35(4): 269–278.
- 15. Kim, M., Kwak, H., Jeong, S., Ko, S., Lee, S., Park, J., Kim, K., Choi, H., and Cha, B. 2007. First report on tomato bushy stunt virus infecting tomato in Korea. Journal of Plant Pathology, 23: 143 150.
- 16. Kumar, V. (Ed.) 2009. "Methods for the Diagnosis of Plant Virus Diseases: A Laboratory Manual" Training course on Diagnosis of Plant Virus Diseases held during 28th

- April 10th May, 2009 at IITA, Ibadan, Nigeria. 90pp.
- 17. Luis-Arteaga, M., Rodriguez-Cerezo, E., Fraile, A., Saez, E., & Garcia-Arenal, F. 1996. Different tomato bushy stunt virus strains that cause disease outbreak in solanaceous crops in Spain. Phytopathology, 86: 535-42.
- 18. Mahy, B. W. J., Regenmortel, M. H. and Van, V. 2009. Desk Encyclopedia of Plant and Fungal Virology. Academic Press, Pp. 445- ISBN 978-0-12-375148-5. Retrieved on 10th August, 2017.
- 19. Manabayeva, S. A., Shamekova, M., Park, J., Ding, X. S., Nelson, R. S., Hsieh, Y., Omarov, R. T. and H. В. Scholthof, 2013. Differential requirements for Tombusvirus coat protein and P19 in plants following leaf inoculation. versus root Virology, 439: 89-96.
- 20. Martelli, G. P.
 1981. Tombusviruses. Pages
 61-90 In: Handbook of plant
 virus infections and
 comparative diagnosis. E.
 Kurstak, (Ed.). ElsevierNorth Holland, Amsterdam.
- 21. Martelli, G. P., Gallitelli, D. and Russo, M. 1988. Tombusviruses. Pages 13-72 In: The Plant

- *Viruses*. Vol. 3. R. Koenig, ed. Plenum Press, New York.
- 22. Martelli, G. P., Russo, M. and Rubino, L. 2001. Tomato bushy stunt virus. Association of Applied Biologists Descriptions of Plant Viruses, No. 382.
- 23. Nawaz, H. H., Umer, M., Bano, S., Usmani, A. and Naseer, M. 2014. A Research Review on Tomato Bushy Stunt Virus disease complex. Journal of Natural Science Research, 4 (5): 2225-0921.
- 24. Ohki, T., Uematsu Lesemann D. E., Honda Y., Tsuda S. and Fujisawa I. 2005. Characterization of tomato bushy stunt virus isolated from newly nipplefruit (Solanum mammosum) in Japan. Journal of General Plant *Pathology*, 71: 74 − 79.
- 25. Pontis, R. E., Gracia O. and Feldman, J. M. 1968, Tomato bushy stunt virus on tomato crops in Argentina. Plant Disease Report, 52: 676 677.
- 26. Russo, M., Burgyan, J., and Martelli, G. P. 1994. Molecular Biology of Tombusviridae. *Advances in Virus Research*, 44: 381–428.doi:10.1016/s0065-3527 (08)60334-6.

- 27. Rochon, D., Lommel, S., Martelli, G.P., Rubino, L. and Russo, M. 2012. Tombusviridae. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Inc. 1111–1138.doi:10.1016/b978-0-12-384684-6.00096-3.
- **28.Sastry, K. S. 2012.** *Introduction. Seed-Borne Plant Virus Diseases, 1–53.* doi:10.1007/978-81-322-0813-6_1.
- **29. Tomilson, J. A. and Faithfull, E. M. 1984.** Studies on the occurrence of *tomato bushy stunt virus* in English rivers. *Annals of Applied Biology*, 104:485–495.
- 30. Yamamura, Y. and Scholthof, H. B. (2005). Tomato bushy stunt virus: a resilient model system to study virus-plant interactions. Molecular Plant Pathology, 6 (5): 491-502.