ASSESSMENT OF NATURAL ENEMY RICHNESS, DOMINANCE, DENSITY AND FUNCTION IN LEPIDOPTEROUS LARVAL PESTS ATTACKING Amaranthus hybridus L. IN ZARIA, NIGERIA

Mailafiya, D. M.*1, 2, Mani, U.¹, Utono, I. M.¹, Kwanashie, A. J.¹, Usman, M. S.¹ and Banwo, O. O.¹

¹Department of Crop Protection, Faculty of Agriculture/Institute of Agricultural Research, Ahmadu Bello University, P.M.B. 1044, Zaria, Nigeria ²Department of Crop Protection, Faculty of Agriculture, University of Maiduguri, P.M.B. 1069, Maiduguri, Nigeria

*Corresponding author's e-mail: dmailafiya@gmail.com

SUMMARY

This study evaluated the richness and dominance of larval pests and natural enemies, plant infestation, pest and parasitoid density and larval parasitism in Amaranthus hybridus L., as cultivated and volunteer hosts, in Zaria, Nigeria. Field inspections were carried out between June and September, 2018 in seven to 15 farmers' fields and their fringes. Recovered larvae were maintained in the laboratory till adult insect emergence. Of the three lepidopterous larval pests found, the Beet web worm, Hymenia recurvalis (Fabricius) was the major pests (dominance (79%/92%)) and frequency (69%/81%)), while the Leaf webber, Psara basalis Walker and the Leaf roller, Sylepta derogata (Fabricius) were minor pests (dominance (3%-12%) and frequency (25%-31%)). In all, five parasitoids (Apanteles sp., Bracon sp., Braunsia sp., Tetrastichus stictococci Silv. and Scelioninae) and one predator species (Scymnus loewii Mulsant) were recovered. In particular, *Apanteles* sp., *Bracon* sp. and *S*. loewii were common in both cultivated and volunteer hosts. Apanteles sp. was the most active parasitoid in both host types (dominance (61%-84%) and frequency (57%-78%)). Plant infestation rate was generally moderate to high (25%-43%) in A. hybridus. Although larval pest (16-23) and parasitoid abundance (4-8) per farmers' field/fringe varied significantly between host types, their densities (3-4 and \leq 1, respectively) per plant were significantly similar. Larval parasitism of *Apanteles* sp. (7%-12%) and the total seasonal rate (11%-18%) were low

in A. hybridus. In conclusion, H. recurvalis is clearly the major lepidopterous larval pest of A. hybridus in this locality. Lepidopterous pests habour a few natural enemies in both cultivated and volunteer hosts. Apanteles sp. is the most dominant parasitoid species, but total parasitism per species or the seasonal rate is low and insufficient.

Keywords: *Amaranthus hybridus*, infestation, lepidopterous pests, *Hymenia recurvalis*, *Apanteles* sp., parasitism

Agro-biodiversity critically supports delivery of various essential functions to the well-being of man. Nutrient cycling or manure decomposition and predation or parasitism are examples of key functions that render beneficial services in the provision of fertile soils and regulation of climate or abundance of crop pests via the natural antagonistic actions of enemies. Particularly, natural enemies of crop pests utilize requisites, nectar/shelter and favorable microclimate, in natural and semi-natural habitats to perpetuate and function (i.e., predation, parasitism and disease infection). Since pest regulation depends on processes that facilitate energy transfer along food webs, persistence of the same for sustained agricultural productivity hinges upon maintenance of biological diversity in agro-ecosystems (28, 33). Research increasingly posits that ecosystems are most resistant and resilient to change where species diversity and key functional species

groups are maintained (14, 35). Insect pest population fluctuations outbreaks tend to be much more effectively regulated in communities with more diverse natural enemies (6, 8, 9, 38). Sustainability of agrorelated biodiversity and ecosystem services are however increasingly threatened by increasing agricultural land expansion, intensification of harmful agropractices and pastoral land degradation in the face of global warming and climate change (11, 13, 34, 36). For instance, unfavorably high temperatures can disrupt the synchrony antagonistic of predator/parasitoid and prey/host relationships, thereby freeing some herbivore pests from natural population regulation (10, 39). Such developments might encourage massive pesticides intervention against agricultural insect pests. Inappropriate use of pesticides may in turn: i) kill natural enemies, ii) disturb the equilibrium between crop pests and their natural enemies, and iii) lead

to the development of resistant insect biotypes (16, 29, 37). It is all the more paramount to establish the richness/diversity, function and habitat preference of natural enemies of crop pests at local and landscape levels, and also have thorough understanding of the complex multitrophic interactions of biotic and components abiotic of agroalong with ecosystems the anthropogenic influences on these interactions.

Amaranthus hybridus L. is commonly cultivated throughout Nigeria under both rainfed and irrigated systems. The relative ease of amaranth cultivation year-round, its vigorous growth, early maturity with little moisture requirement, resistance to drought, low heat or labour requirement and high adaptability to a wide range of soils make it a valuable source of nutrients, dietary fiber and income to small-scale farmers (22). The tender leaves, shoots and stems of amaranth are subject to infestation by a myriad of insect pests. At least 40 lepidopterous larval pest species are reported to attack amaranth in the country (1, 2, 12, 17, 21, 26). The Beet web worm, Hymenia recurvalis Fabricius (Lepidoptera: Crambidae: Pyraustinae: Spilomelini) is the most abundant larval pest of amaranth during the cropping and/or offseasons in most regions of the country (1, 12, 17, 21, 24). The richness of 144

parasitoids attacking these larval pests in a single locality within the country can be high (≥17 species) (21). Effective parasitoids play an important role in regulating their larval host/pest populations. For instance, parasitism of Busseola fusca (Fuller) by indigenous parasitoids is high, $\geq 70\%$, in parts of Kenya (15) and South Africa (18). Altogether, these make A. hybridus an important cataloguing vegetable for diversity of associated pests and their natural enemies in all agroecological zones of the country. Presently, the faunal assemblage of this cherished green leafy vegetable in the Guinea Savannah region is poorly known. This study. determined the richness, dominance and frequency of larval pests and natural enemies associated with two host types of A. hybridus, cultivated and volunteer hosts, as well as the rates of plant infestation and larval parasitism along with pest and parasitoid abundance and density in these hosts in Zaria, Nigeria.

MATERIALS AND METHODS

Field inspection of *A. hybridus*, as cultivated and volunteer hosts, was carried out between June and September, 2018 in seven to 15 farmers' fields (intercropped mainly with cereals (maize/sorghum) and legumes (cowpea)) and their fringes in Zaria. Thirteen weekly visits were made to each of the farmers' field or

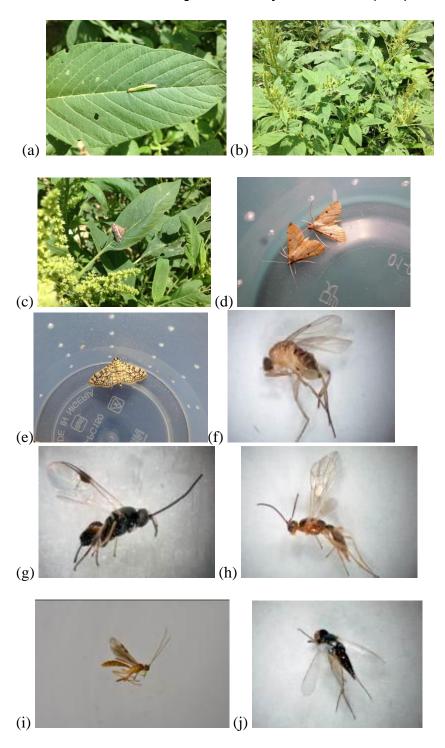
fringes, where 20 or ten to 15 plants were randomly inspected, lepidopterous respectively. Each larva recovered was placed in a ventilated plastic jar for feeding as described by Le Ru et al. (19) and for daily observations till pupation, under ambient conditions in an Entomology laboratory, Department of Crop Protection, Ahmadu Bello University (ABU), Zaria. All pupae and cocoons obtained were kept separately in smaller vials until adult emergence of moths or parasitoids. Larval parasitism was calculated as the percentage of susceptible larvae parasitized (42). Plant infestation, larval and parasitoid abundance or density and larval parasitism were compared between host types using Kruskal-Wallis one-way ANOVA (α 0.05) with the STATISTIX statistical software, version 10.0. species dominance Insect was determined as the percentage of

individuals of a given taxon compared to the individuals of all taxa found, with species classification as Dominant (>5%), Influent (2-5%) Recedent (<2%)or (7).The frequency of a species is the percentage of samples in which the particular taxon was detected, with species classification as Constant (>50%), Accessory (25-50%), or Accidental (<25%). Margalef's richness index (Dmg) was estimated using the formula (20):

Dmg = (S - 1) / ln(n)

Where *S* is the number of taxa and *n* is the number of individuals.

RESULTS


In all, 5425 *A. hybridus* plants were inspected. Of which, 1525 were volunteer hosts, while 3900 were cultivated hosts. Six insect pests were found attacking *A. hybridus* in this locality (Table 1 and Plate 1).

Nigerian Journal of Plant Protection (NJPP) Vol. 33, No 1 June. 2019

Table 1: The taxa and host distribution of larval pests and natural enemies in two host types of *A. hybridus* during 2018 cropping season in Zaria, Nigeria

Order	Family	Subfamily	Tribe	Genus species	A. hybridus	
		·		-	Cultivated host	Volunteer host
Pests:						
Lepidoptera	Crambidae	Spilomelinae	Spilomelini	Hymenia recurvalis (Fabricius)	+	+
				Psara basalis Walker	+	+
				Sylepta derogata (Fabricius)	+	+
Diptera	Drosophilidae	Drosophilinae	Colocasiomyini	Zaprionus ghesquierei Collart	+	+
	Scatopsidae	Scatopsinae	Rhegmoclematini	Scatopse sp.	+	+
	Sciaridae			<i>Lycoriella</i> sp	+	-
Natural enemies: A) Parasitoids						
Hymenoptera	Braconidae	Microgastrinae	Microgastrini	<i>Apanteles</i> sp.	+	+
• •				Bracon sp.	+	+
	Braconidae	Agathidinae	Agathidini	Braunsia sp.	+	-
	Eulophidae	Tetrastichinae	Tetrastichini	Tetrastichus stictococci Silv.	+	-
	Scelionidae	Scelioninae		Scelioninae	+	-
B) Predator						
Coleoptera	Coccinellidae	Scymninae	Scymnini	<i>Scymnus loewii</i> Mulsant	+	+

^{+,} present; -, absent

Plate 1: Showing (a) lepidopterous larvae in cultivated *A. hybridus* (b) larval feeding damage in volunteer hosts; some insect pests recovered: (c) *H. recurvalis*, (d) *P. basalis*, (e) *S. derogata* and (f) *Z. ghesquierei*; all parasitoids and predator recovered: (g) *Apanteles* sp., (h) *Bracon* sp., (i) *Braunsia* sp., (j) *T. stictococci*, (k) Scelioninae and (l) *S. loewii*

Three lepidopterous species including H. recurvalis, the Leaf webber, Psara basalis Walker and the roller. Leaf Sylepta derogata (Fabricius) were recovered in both cultivated and volunteer hosts. Three dipteran species including Lycoriella sp., Scatopse sp. and Zaprionus ghesquierei Collart were recovered in cultivated hosts, whereas only the latter two species were recovered in volunteer hosts. Six species of natural enemies including five parasitoids species (Apanteles sp., Bracon sp., Braunsia sp., Tetrastichus stictococci Silv. and Scelioninae) and one predator species (Scymnus loewii Mulsant) were recovered in cultivated hosts, whereas only half of the species (Apanteles sp., Bracon sp. and S. loewii) were recovered in volunteer hosts. Hymenia recurvalis and P. basalis or S. derogata respectively dominant and influent 148

pest species in cultivated hosts, but were strictly dominant species in volunteer hosts (Table 2). Hymenia recurvalis constantly occurred in cultivated and volunteer hosts, while P. basalis and S. derogata were accessory species in these hosts. The richness of natural enemies. parasitoids and predator, ranged from 0.56 in volunteer hosts to 0.92 in cultivated hosts. Apanteles sp., Bracon sp./S. loewii and Braunsia sp./T. stictococci/Scelioninae were respectively dominant and influent species in cultivated hosts. Also, Apanteles sp./Bracon sp., Braunsia sp./T. stictococci/Scelioninae and S. *loewii* were respectively constant, accidental and accessory species in cultivated hosts. In volunteer hosts, Apanteles sp./Bracon sp. and S. loewii were respectively dominant and influent species. Also, Apanteles sp. and Bracon sp./S. loewii were respectively constant and accessory species in volunteer hosts.

Percentage plant infestation, number of larvae, number of parasitoids and parasitism per farmer's larval field/fringe were significantly higher in cultivated than in volunteer hosts (H = 49.7; df = 320; P = 0.0001, H =144; df = 320; P = 0.0001, H = 20.7; df = 320; P = 0.0001 and H = 47.3; df= 320; P = 0.0324, respectively)(Table 3). Larval and parasitoid density per plant did not vary significantly between cultivated and volunteer hosts (H = 0.44; df = 320; P= 0.2117 and H = 0.56; df = 320; P =0.5124, respectively). The abundance

of Apanteles sp. or Bracon sp. was significantly higher in cultivated than in volunteer hosts (H = 11.6; df = 320; P = 0.0010 or H = 9.47; df = 320; P =0.0028, respectively) (Table 4). However, the abundance of S. loewii did not vary significantly between cultivated and volunteer hosts (H =0.79; df = 320; P = 0.3758). The larval parasitism rate of *Apanteles* sp. was significantly higher in cultivated than in volunteer hosts (H = 2.05; df = 320; P = 0.0230) (Table 5), while that of Bracon sp. did not vary significantly between cultivated and volunteer hosts (H = 1.33; df = 320; P= 0.1848).

Table 2: The richness, dominance and frequency of lepidopterous larval pests and natural enemies in two host types of *A. hybridus* during 2018 cropping season in Zaria

Lepidopter ous	Quantitative categorisation (%, category)			Natural enemy Species	Margalef 's richness		Quantitative categorisation (%, category)				
pest species											
-	Dominance		Frequency			(Dmg)		Dominance		Frequency	
							V				
	Ch	Vh	Ch	Vh		Ch	h	Ch	Vh	Ch	Vh
Н.	92,	79,	69,	81,	A I	0.9	0.	61,	84,	78,	57,
recurvalis	D	D	Cn	Cn	Apanteles sp.	2	56	D	D	Cn	Cn
P. basalis	5, I	12,	30,	31,	Bracon sp.			31,	11,	53,	25,
		D	Ac 25,	Ac	•			D	D	Cn	Ac
S. derogata	3, I	9, D	Ac	27, Ac	Braunsia sp.			5, I	-	20, Ad	-
					T. stictococci			5, I		22,	
					1. Silciococci			3,1	-	Ad	-
					Scelioninae			5, I	_	9, Ad	_
					S. loewii			8, D	5, I	31, Ac	39, Ac

Ch, cultivated hosts; Vh, volunteer hosts

D, Dominant; I, Influent;

Cn, Constant; Ac, Accessory; Ad, Accidental

Nigerian Journal of Plant Protection (NJPP) Vol. 33, No 1 June. 2019

Table 3: Plant infestation/larval parasitism rate and larval pest/parasitoid abundance and density in two host types of *A. hybridus* during 2018 cropping season in Zaria (mean \pm SE)

A. hybridus	Plant infestation (%) per	infestation No. larvae		No. Larval parasitoids		Larval parasitism (%) per	
	farmer's	farmer's	density	per farmer's	density	farmer's	
	field/fringe	field/fringe	per plant	field/fringe	per plant	field/fringe	
Cultivated host	42.75±3.6a	23.04±1.9a	4.15±2.2	8.15±0.8a	0.79±0.5	18.11±2.7a	
Volunteer host	24.95±2.7b	15.61±0.6b	2.86±0.61	3.49±0.1b	0.15±0.1	10.79±2.1b	

Table 4: Parasitoid/predator abundance per species in two host types of *A. hybridus* during 2018 cropping season in Zaria (mean \pm SE)

A. hybridus		N	No. (per farmer's f	ield/fringe)		
	Apanteles sp.	Bracon sp.	T. stictococci	Braunsia sp.	Scelioninae	S. loewii
Cultivated host	2.11±0.3a	0.75±0.1	0.20±0.0a	0.15±0.0a	0.61±0.1a	1.11±0.3
Volunteer host	0.43±0.0b	0.18±0.0	-	-	-	0.25±0.0

Table 5: Percentage parasitism of larval pests in two host types of *A. hybridus* during 2018 cropping season in Zaria (mean \pm SE)

A. hybridus	Larval parasitism (%, per farmer's field/fringe)							
	Apanteles sp.	Bracon sp.	T. stictococci	Braunsia sp.	Scelioninae			
Cultivated host	12.09±1.2a	3.29±0.4	0.46±0.1	0.76±0.1	1.53±0.3			
Volunteer host	6.67±1.8b	3.31±0.3	-	-	-			

DISCUSSION

Although a few lepidopterous pest species ($\leq \sin$) were recorded in A. hybridus in this locality and in Benin, south southern Nigeria (12), amaranth reportedly habours a high richness (≥17 species/8 families) of these pests in southwestern (1) and northeastern parts of the country (21). The low richness of lepidopterous recovered in this study was to an extent attributed to wide spectrum or protective pesticidal applications in farmers' fields and the surrounding non-cropped patches, observed severally whilst sampling. This might further explain the none recovery of other lepidopterous larval pests commonly reported in amaranth (1, 21), such as the Cotton boll worm, Helicoverpa armigera (Hübner), the Cotton leaf worm, Spodoptera litura (Fabricius) or the African armyworm, Spodoptera exempta (Walker). The high dominance (79% / 92%) and constant occurrence (69% / 81%) of H. recurvalis in both cultivated and volunteer hosts, indicates that it is a major pest of this leafy vegetable in this locality. Hymenia recurvalis is also the major lepidopterous pest of amaranth in all the earlier mentioned regions or agro-ecological zones of Nigeria, accounting for 21% to 93% of the larvae recovered and $\leq 69\%$ foliage loss (1, 12, 17, 24, 25). The marginal dominance (9% / 12%) of P. basalis and S. derogata in volunteer

hosts, coupled with their very low dominance (3% / 5%) in cultivated hosts and moderate occurrence (25% to 31%) in both host types signifies that they are minor or occasional larval pests of A. hybridus in this area. Psara sp. and S. derogata have also been observed to be minor pests of amaranth in most of the earlier mentioned regions of the country, accounting for 7% to 10% of all larval collections (1, 12, 17, 22, 24). Sylepta derogata is an economic pest of cotton, okra, hibiscus and other leafy/fruit vegetables in different parts of Nigeria (3, 4, 23, 40). In cotton, S. derogata is responsible for plant infestation of between 15% and 42% at 50 days after sowing (40). In okra, S. derogata accounts for 92% abscission of pods and seeds during the rainy seasons, leading to 65% non-germination of mature seeds (23). The three dipteran species found, Lycoriella sp., Scatopse sp. and Zaprionus ghesquierei Collart. non-economic cosmopolitan insect species, which often have their larval stages present in decaying plant or animal materials (5, 41).

The high dominance (61% / 84%) and constant occurrence (57% / 78%) of *Apanteles* sp. in cultivated and volunteer hosts indicates that it is the most active of the five parasitoid species recovered in this locality. *Apanteles* spp. might be common

parasitoids of larval pests of amaranth in some parts of the country. In Ibadan, Apanteles hymenaea was the parasitoid sole larval found, following two years data collection in amaranth (1). Although, this larval endoparasitoid surprisingly was recovered in pupal hosts, it accounted for 63% of the hymenopterans somewhat collected (28).The moderate dominance (31%) and constant occurrence (53%) of Bracon sp. in cultivated hosts, along with its marginal dominance (11%)moderate occurrence (25%)volunteer hosts suggests that it is partly active against lepidopterous larval pests in A. hybridus.

To our knowledge, this is the first report of Braunsia sp., T. stictococci, Scelioninae and S. loewii recovery in lepidopterous larval pests amaranth in Nigeria. However, the former three parasitoid species were restricted to larval pests in cultivated hosts. Their dominance level and recovery/occurrence frequency were respectively observed to be low (5%) and accidental (9% to 22%). These suggest that they are minor or opportunistic parasitoids of larval pests feeding in A. hybridus within this locality. Braunsia biluntata, is a related species recovered northeastern Nigeria by Okrikata et al. (27), whilst assessing the diversity and abundance of insects in different habitats within Wukari, Taraba State.

Though the associated hosts (plant and herbivoure) remain unknown, at 0.8% abundance, the dominance level of the parasitoid is likewise very low. members of the family Scelionidae are egg parasitoids of lepidopterous and hemipterous hosts (30, 31, 32). The scelionid species recorded in this study may therefore be an egg-to-larval parasitoid, since it emerged from larval hosts. The low (5%) or marginal (8%) dominance of S. loewii and its moderate occurrence (31% to 39%) in both cultivated and volunteer hosts indicates that the cosmopolitan species is not active against larval pest of A. hybridus in this area. The generalist predator might have favourably concentrated abundant other prev(s) agroecosystems within this locality. Further studies may establish the response pattern predatory impact of this beneficial species on crop pest population regulation in different agroecosystems in this region.

Irrespective of the variation recorded between host types, the infestation rate of *A. hybridus* seems to be moderate to high (25% to 43%) during the rainy season. Evidently, larval parasitism according to each parasitoid species and the total seasonal rate in both cultivated (\leq 12% / 18%) and volunteer (\leq 7% / 11%) hosts are low and hardly exceeds 18%. Much higher parasitism

rates (21% to 49%) of *Cotesia* sp. has been recorded against larval pests of A. hybridus cultivated in Maiduguri, northeastern Nigeria (21). The results of larval pest attack in different host types confirms that the parasitism rates of braconid parasitoids in amaranth rarely surpasses 8%, and is thus negligible. Nevertheless, similar to the earlier suggestion with regards larval pest densities, low parasitoid densities in A. hybridus within this area may not be unconnected with pesticidal applications in farmers' fields and the surroundings to protect against crop infestation.

CONCLUSION

Our results indicate that *H. recurvalis* and *P. basalis* or *S. derogata* are respectively major and minor lepidopterous larval pests of *A. hybridus* in this locality. Plant infestation rate by these larval pests

1. Aderolu, I.A., Omooloye, A.A.

REFERENCES

and Okelana, F.A. 2013.
Occurrence, abundance and control of the major insect pests associated with Amaranths in Ibadan, Nigeria. *Entomology, Ornithology and Herpetology* 2: 112. Retrieved 11th May, 2014 from www.omicsonline.org/pdfdownload.php?download=occurrence-

abundance-and-control-of-the-

appear to be moderate to high (25% to 43%) in both cultivated and volunteer hosts. The richness of parasitoids found in different host types was low (\leq 5 species). Larval pest (\leq 4) and parasitoid (\leq 1) densities per plant tends to be generally low in these hosts. Likewise, larval parasitism of *Apanteles* sp. or the total seasonal rate is low (\leq 18), and almost insignificant.

ACKNOWLEDGMENTS

We thank Mr. I. P. Musa of the Insect Museum and Mr. M. D. Kallamu of the Legumes Laboratory, Department of Crop Protection, Faculty of Agriculture/Institute for Agricultural Research (IAR), Ahmadu Bello University (ABU), Zaria, Nigeria for identification of the specimens collected and technical assistance, respectively.

- major-insect-pests-associated-with-amaranths-in-ibadan-nigeria-2161-983.1000112.pdf&aid=21997.
- **2.Akinlosotu, T.A. 1983.** Destructive and beneficial insects associated with vegetables in South West Nigeria. *Tropical Horticulture*. 6: 217-228.
- **3. Anioke, S.C. 1988.** Screening of Okra for resistance to *Sylepta derogata* Fabricius [Pyralidae] in

- Eastern Nigeria. *Tropical Pest Management*. 34(4): 421-422.
- **4. Anioke, S.C. 1989.** The biology of *Sylepta derogata* Fabricius (Pyralidae), a Lepidopterous pest of Okra in Eastern Nigeria. *Tropical Pest Management*. 35(1): 78-82.
- **5. Broadley, A., Kauschke, E. and Mohrig, W. 2018.** Black fungus gnats (Diptera: Sciaridae) found in association with cultivated plants and mushrooms in Australia, with notes on pest species and biosecurity interceptions. *Zootaxa*. 4415(2): 201-242.
- 6. Cardinale, B.J., Harvey, C.T., Gross, K. and Ives, A.R. 2003. Biodiversity and biocontrol: Emergent impacts of a multienemy assemblage on pest suppression and crop yield in an agroecosystem. *Ecology Letters* 6: 857-865.
- **7. Curry, J.P. 1973.** The arthropods associated with the decomposition of some common grass and weed species in the soil. *Soil Biology and Biochemistry.* 5: 645-657.
- **8. Daily, G.C. 1997.** Nature's services: Societal dependence on natural ecosystems. Island Press, Washington, DC.
- 9. Duffy, J.E., Cardinale, B.J., France, K.E., McIntyre, P.B., Thébault, E. and Loreau, M. 2007. The functional role of

- biodiversity in ecosystems: Incorporating trophic complexity. *Ecology Letters*. 10: 522-538.
- 10. Durant, J.M., Hjermann, D.O., Ottersen, G. and Stenseth, N.C. 2007. Climate and the match or mismatch between predator requirements and resource availability. *Climate Research*. 33: 271-283.
- 11.ECA. 2005. Assessing sustainable development in Africa. Africa's Sustainable Development Bulletin. UN Economic Commission for Africa (ECA), Addis Ababa.
- 12. Ezeh, A.E., Ogedegbe, A.B.O. and Ogedegbe, S.A. 2015. Insect pest occurrence on cultivated *Amaranthus* spp. in Benin City, Edo State, Nigeria. *Journal of Applied Science, Environment and Management*. 19(2): 335-339.
- 13. Feka, N.Z. and Ajonina, G.N. 2011. Drivers causing decline of Mangrove in West-Central Africa: A Review. *International Journal* of *Biodiversity Science*, Ecosystem *Services* and *Management*. 7: 217-230.
- 14. Fischer, J., Lindenmayer, D.B. and Manning, A.D. 2006. Biodiversity, ecosystem function and resilience: Ten guiding principles for commodity production landscapes. Frontiers

- in *Ecology* and the *Environment*. 4: 80-86.
- variation in development of *Cotesia sesamiae* (Hymenoptera: Braconidae) on *Busseola fusca* (Lepidoptera: Noctuidae) in Kenya: Coevolutionary genetics and role of Polydnaviruses. Ph.D Thesis, Kenyatta University, Nairobi, Kenya. 166 pp.
- **16. Houndekon, V.A., De Groote, H. and Lomer, C. 2006.** Health costs and externalities of pesticide use in the Sahel. *Outlook* on *Agriculture*. 35: 25-31.
- 17. Joseph, A., Ademiluyi, B.O., Aluko, P.A. and Alabeni, T.M. 2016. Effect of poultry manure treated and untreated with effective microorganisms on growth performance and insect pest infestation on *Amaranthus hybridus*. *African Journal of Plant Science*. 10(1): 10-15.
- **18. Kfir, R. 1995.** Parasitoids of the African stem borer, *Busseola fusca* (Lepidoptera: Noctuidae) in South Africa. *Bulletin of Entomological Research*, 85:369-377.
- 19. Le Ru, B.P., Ong'amo, G.O., Moyal, P., Muchugu, E., Ngala, L., Musyoka, B., Abdullah, Z., Matama-Kauma, T., Lada, V.Y., Pallangyo, B., Omwega,

- C.O., Schulthess, F., Calatayud, P.A. and Silvain, J. F. 2006. Geographic distribution and host plant ranges of East African noctuid stem borers. Annales de la Société Entomologique de France, 42: 353-361.
- **20.Magurran, A.E. 1998.** Ecological diversity and its measurements. Princeton University Press, NJ.
- 21. Mailafiya, D.M., Sharah, H.A., Jumbam, S.B. and Dauda, I. 2018. Parasitoid diversity andlarval parasitism rates of lepidopterous pests in four Amaranth hosts in Maiduguri, Sudano-Sahelian Agroecological Zone. Journal of Forest Science and Environment. 3(1): 1-9.
- 22. Maundu, P., Achigan-Dako, E.G. and Morimoto, Y. 2009. Biodiversity of African vegetables. In: Shackleton, C.M., Pasquini, M.W. and Drescher, A.W. (Eds.). African Indigenous Vegetables in Urban Agriculture, Earthscan, London, pp. 65-104.
- 23. Ogbalu, O.K., Bob Manuel, R.B. and Gbarakoro, T. 2015. The Role of *Sylepta derogata* [Lepidoptera: Pyralidae] in the abscission and defoliation of Okra flowers, seeds and pods in monocrop gardens in Port Harcourt, Nigeria. *Journal of*

- Pharmacy and Biological Sciences. 10(6): 134-138.
- **24. Ogedegbe, A.B.O. and Ezeh, A.E. 2015.** Effect of variety and nutrient on insect pest infestation of *Amaranthus* spp. *Journal of Applied Sciences and Environmental Management,* 19(2):251-256.
- 25. Oke, O.A., Odiyi, C.A. and Ofuya, T.I. 2015. Insects associated with underutilized crop: Grain, leafy and ornamental Amaranth in Ibadan, Nigeria. *Journal of Agriculture and Ecology Research International*. 2(2): 145-155.
- 26. Okunlola, A.I., Ofuya, T.I. and Aladesanwa, R.D. 2008. Efficacy of plant extracts on major insect pests of selected leaf vegetables in South Western Nigeria. Agricultural Journal, 3:181-184.
- 27. Okrikata, E. and Yusuf, O.A. 2006. Diversity and abundance of insects in Wukari, Taraba State, Nigeria. International Biological and *Biomedical Journal* 2(4): 156-166.
- 28. Othim, S.T.O., Agbodzavu, K.M., Kahuthia-Gathu, R., Akutse, K.S., Muchemi, S., Ekesi, S. and Fiaboe, K.K.M. 2017. Performance of *Apanteles hemara* (Hymenoptera: Braconidae) on two Amaranth leaf-webbers: Spoladea recurvalis and Udea ferrugalis

- (Lepidoptera: Crambidae) Environmental Entomology. 46(6): 1284-1291.
- 29. Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordane, S., Horowitz, A. and D'Amore, M. 1992. Environmental and economic costs of pesticide use. *Bioscience*. 42: 750–760.
- 30. Polaszek, A. and Kimani-Njogu, S.W. 1990. *Telenomus* species (Hymenoptera: Scelionidae) attacking eggs of Pyralid pests in Africa: A Review and Guide to Identification. *Bulletin of Entomological Research*. 80: 57-71.
- 31. Polaszek, A. and Kimani-Njogu, S.W. 1998. Scelionidae. In: Polaszek, A. (Ed.). African Cereal Stem Borers: Economic Importance, Taxonomy, Natural Enemies and Control. CTA/CABI Wallingford, UK. pp. 259-264.
- 32. Schulthess, F., Chabi-Olaye, A. and Goergen, G. 2001. Seasonal fluctuations of Noctuid stem borers egg parasitism Southern Benin with special reference to Sesamia Calamistis Hampson (Lepidoptera: Noctuidae) **Telenomus** and species (Hymenoptera: Scelionidae) on Maize. **Biocontrol** Science and *Technology*, 11: 745-757.

- **33. Srivastava, D.S.** and **Vellend, M. 2005.** Biodiversity-ecosystem function research: Is it relevant to conservation? *Annual* Review of *Ecology, Evolution*, and Systematics. 36: 267–294.
- 34. Traill, L.W., Lim, M.L.M., Sodhi, N.S. and Bradshaw, C.J.A. 2010. Mechanisms driving change: Altered species interactions and ecosystem function through global warming. *Journal of Animal Ecology*. 79: 937-947.
- 35. Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I. and Thies, C. 2005. Landscape perspectives on agricultural intensification and biodiversity ecosystem service management. *Ecology Letters*. 8: 857-874.
- **36. UNEP. 2002.** Africa environment outlook: Past, Present and Future Perspectives. United Nations Environment Programme (UNEP) Report. UNEP, Progress Press Ltd, Nairobi.
- **27. UNEP. 2013.** Report on the costs of inaction on the sound management of chemicals. United Nations Environment Programme (UNEP) Report. UNEP, Geneva.

- **38. van Emden, H.F. and Williams, G.F. 1974.** Insect stability and diversity in Agro-ecosystems. *Annual Review* of *Entomology*. 19: 455-475.
- **39.** Wilmers, C.C., Post, E. and Hastings, A. 2007. The anatomy of predator-prey dynamics in a changing climate. *Journal of Animal Ecology*. 76: 1037-1044.
- 40. Yahaya, A.I., Ado, S.G., Ishiyaku, M.F., Onu, I. and Usman, A. 2012. Resistance of cotton varieties to Cotton leaf roller, *Sylepta Derogata* (Fabricius) (Lepidoptera: Crambidae), under field conditions. *African Entomology* .20(2): 276-280.
- 41. Yassin, A. and David, J.R. 2010. Revision of the Afro-tropical species of *Zaprionus* (Diptera, Drosophilidae), with descriptions of two new species and notes on internal reproductive Structures and immature stages. *ZooKeys*. 51: 33-72.
- 42. Zhou, G., Overholt, W.A. and Kimani-Njogu, S.W. 2003. Species richness and parasitism in assemblage of parasitoids attacking maize stem borer in coastal Kenya. *Ecological Entomology* 28: 109-118.